
JANUARY 2003 - Volume II - Issue 1

The Magazine For PHP Professionals

php|architect

Writing Secure PHP Code
Make your applications safer

Reviewed for you: IonCube PHP Accelerator 1.3.3

CodeCharge Studio 1.0

 Plus:
 Using the .NET Assembly with PHP

 Writing A Web-based PDF Viewer
 Taming Full-Text Search with MySQL

 Accessing the Windows API and Other DLLs

 Implementing Database Persistence Layers

Exclusive ZEND
Interview

This copy is registered to:
Jakob Breivik Grimstveit
jakob.grimstveit@starshipping.com

Technologies Ltd.

Visit www.zend.com
for evaluation version and ROI calculator

Zend Performance Suite
Reliable Performance Management for PHP

Serve More.
 With Less.

The designers of PHP offer you the full spectrum of PHP solutionsThe designers of PHP offer you the full spectrum of PHP solutions

IN
D

E
X

Departments

TABLE OF CONTENTS

January 2003 · PHP Architect · www.phparch.com 3

php|architect
Features

10 | Implementing Database

Persistence Layers in PHP

by Shawn Bedard

19 | Accessing the Windows API and

other Dynamic Link Libraries

by David Jorm

30 | Taming Full-Text Search with

MySQL

by Leon Vismer

37 | The Zend of Computer

Programming: Small Business

Heaven

by Marco Tabini

42 | Using The .NET Assembly

through COM in PHP

by Jayesh Jain

50 | Writing Secure PHP Code

by Theo Spears

62 | Writing a Web-based PDF

Viewer

by Marco Tabini

4 | EDITORIAL RANTS

5 | NEW STUFF

6 | PHP-WIN

CodeCharge Studio 1.0

58 | REVIEWS

ionCube PHP Accelerator

68 | TIPS & TRICKS

by John Holmes

71 | BOOK REVIEWS

73 | exit(0);

Let’s Call it the Unknown

Language

E
X
C
LU
S
IV
E

E
D

IT
O

R
IA

L

R

A
N

T
S

EDITORIAL

January 2003 · PHP Architect · www.phparch.com 4

php|architect
Volume II - Issue 1

January, 2003

Publisher

Marco Tabini

Editors

Arbi Arzoumani
Brian K. Jones
Marco Tabini

Graphics & Layout

Arbi Arzoumani

Administration

Emanuela Corso

Authors

Arbi Arzoumani, Shawn Bedard,
John W. Holmes, Jayesh Jain, David
Jorm, Theo Spears, Marco Tabini,

Leon Vismer

php|architect (ISSN 1705-1142) is published
twelve times a year by Marco Tabini & Associates,
Inc., P.O. Box. 3342, Markham, ON L3R 6G6,
Canada.

Although all possible care has been placed in
assuring the accuracy of the contents of this mag-
azine, including all associated source code, listings
and figures, the publisher assumes no responsibil-
ities with regards of use of the information con-
tained herein or in all associated material.

Contact Information:

General mailbox: info@phparch.com
Editorial: editors@phparch.com
Subscriptions: subs@phparch.com
Sales & advertising: sales@phparch.com
Technical support: support@phparch.com

Copyright © 2002-2003 Marco Tabini &

Associates, Inc. — All Rights Reserved

There is nothing like a "trial by
fire" to make or break your day.
By the time the first issue of
php|a hit the virtual stands, we
had worked insane hours for
almost a straight month to
ensure that everything was as
good as we could possibly make
it. Even though, as a result, we
were terribly tired, I couldn't
sleep for two days (yes, I have
been committed to-and released
from-a mental institution since
then, in case you were wonder-
ing).

Luckily, the results were
encouraging-better than we had
originally expected, to be
sure,and the December issue did
very well. Many of you wrote us
to let us know that the magazine
was better than you had expect-
ed in terms of content and
detail; my personal favorite was
a note found in a web forum,
where someone had written that
they were surprised by the
amount of information con-
tained in php|a, as he was
expecting a ten page fanzine.
Still, we had a few constructive
critiques sent our way, and that
was very good-it gave us guid-
ance on where we had been less
than brilliant and, therefore, a
range of issues to fix before the
next month.

As a result, you will find a
number of changes in this issue.
First of all, we have now includ-
ed internal links throughout the
magazine, for those who like to
read it on-screen. The table of
contents on page 3 is fully linked
to each of the articles, while the
words "php|architect" at the bot-
tom of each page link back to
the table of contents. This
should make "flipping" through
the pages of the magazine easi-
er for everyone.

With this issue, I think we have
improved the quality of the top-
ics we cover as well. We wish our
role in the PHP community to be
that of helping to make our
beloved language an invaluable
choice for enterprise-level proj-
ects, and that can only be done
by increasing the quality of the
information available out there.
Whether we succeed or not is, as
they say, for posterity to decide,
but at least we're trying!

The other good news, as you
no doubt will have already
noticed by the time you read
this, is that this issue is free. It's
our way to say thank you to all
those who have believed in us-
and welcome to those who are
just now getting a chance to try
us out.

Finally, I'm happy to say that,
from this issue forward, Brian K.
Jones

joins our editorial team. After
the December issue was out, we
thought we had done a pretty
good job, but it became evident
that there should be at least one
person in our editorial staff for
whom English is the first lan-
guage. Brian brings his excellent
technical expertise and valuable
knowledge of the editorial
process to our team, and we can
only be happy to have him with
us (note to Brian-you now offi-
cially owe me a drink. Make that
a good one).

Happy reading!

N
E
W

S
T
U

F
F

NEW STUFF

PHP 4.3 Is Out

The new version of PHP is out. RC4 was the last step
before the final release—developers have been asked to
commit to the PHP CVS repository only changes that fix
bugs marked as “critical” in the bug tracking system,
and thankfully only lasted a few days.

The PHP developers have also solved a dilemma that
has all but dominated the mailing lists of late—the
naming of the CLI (command-line interface) version of
PHP vs. the CGI executable, which is used when using
PHP as a separate executable to run scripts through a
web server.

Artware Releases

New PHP-based CMS

Vienna, Austria-based Artware Multimedia
announced in early December the publication of its
new Content Management System based on PHP,
called Constructioner Web Technology.

Conceived to be an inexpensive content manage-
ment solution aimed primarily at non-technical users,
Constructioner features a web-based WYSIWYG man-
agement system, support for an arbitrary number of
languages, and can be integrated with Dreamweaver.
The software is available for free download for develop-
ers—there are no time limits on the trial version. A key,
which retails for $399 (US), must be obtained only
when the CMS engine is used in a public website.

A live sample is available at
http://www.constructioner.com, where you can play
with the product and also find more information about
it.

ExpertRating Launches PHP

Certification Exam

Online certification company ExpertRating has
launched a new certification exam for PHP developers.

The exam takes place entirely online and consists of
forty multiple-choice ques-
tions, each feature between
two and eight different
answers, one or more of
which could be correct—
your basic mid-term nightmare. The questions cover
topics ranging from the basics of the PHP language—
like operators, syntax, and typecasting—to more
advanced subjects like regular expressions, sessions and
mailing.

The ExpertRating exam costs $10 (US), which can be
paid online through a secure credit card form.
According to the ExpertRating website, the exam must
be taken within a month of registering for it.

For more information, you can follow this link:
http://www.expertrating.com/details.asp?examid=91.

January 2003 · PHP Architect · www.phparch.com 5

php|a

The Magazine For PHP Professionals

php|architect

We Dare You
To Be

A Professional.
Subscribe to php|a Today and
Win a book from Wrox Press

P
H

P
-
W

IN

Let me start by confessing to the fact that this was not
an easy review. To fully appreciate this product, you

must sit down and actually use it for a practical pur-
pose. It's a great learning experience. In a nutshell,
CodeCharge is a powerful code generating software for
the web. Some of you might think "Oh no, another
code generator—run for the hills!". However, I would
like to put CodeCharge in its own category, rather than
just call it a code generator. To fully explore this appli-
cation, I would have to include at least 30 screen shots
of its intuitive interface to configure, manage, modify,
and publish your project. I suggest that, once you read
this review, go to their website and download the trial
copy and start using it.

Let's start by covering the basic grounds. The instal-
lation was straightforward. If you don't have a license,
you can use the program for 30 days. It supports code
generation for the following programming languages:
ASP.NET (C#), ASP 3.0, PHP 4.0, Java Servlets 2.2, JSP
1.1, ColdFusion 4.01, and Perl 5. How? It uses an XSL
engine using XML file formats. If you think this is
another Visual Studio, think again—this baby can gen-
erate code and let you manage it with ease.

CodeCharge comes with a list of code generating
wizards called 'Component Builders'. Some of the
'Component Builders' are:

Grid Builder - Lets you quickly create database

grids on your pages. This is great for those back end
management tools.

Record Builder - Rapidly create data maintenance
forms. This is handy for both front-end and back-end
pages (ie. registrations forms).

Login Builder - What's a back-end without a proper
security login page. Or, have your users login to their
accounts.

PHP-WIN

January 2003 · PHP Architect · www.phparch.com 6

Reviewed For You

CodeCharge Studio 1.0

By Arbi Arzoumani

The Cost:
CodeCharge: $149
CodeCharge Studio: $279.95

Requirements:
Windows '95/'98/ME/NT4/2000/XP
64MB RAM
20MB Hard Drive Space
File Size 16.7MB

Download Page:
CodeCharge

Download limitations:
The CodeCharge download is a fully functioning
30-day trial

CodeCharge Home Page:
CodeCharge

Company Background:
YesSoftware Inc. develops and markets RAD (Rapid
Application Development) tools. They are based in
Delaware and are a self-funded and privately held
company. They begin developing the code genera-
tion technology in 1999. It was completed in 2001.

PHP-WIN CodeCharge Studio 1.0

On top of these code generating wizards, sits the
Application Template Library, a set of built-in templates
for common web solutions that can be configured and
launched in no time. The version of CodeCharge that
I had came with the following solutions: Employee
Directory, Bug Tracking, Task Manager, Portal,
Registration Form, Forum, and a Book Store.

Naturally when creating a project, you are asked if
you want one of the above solutions or a blank project.
A blank project is not actually 'blank'—there are at least
6 common files that are always included in the source
of every page. These common files can be regarded as
the framework behind the IDE.

For those of you using MS FrontPage, here's the good
news. You can get an add-in and convert your MS
FrontPage into a powerful code-generating monster.
Take a look at Figure 1 for the added CodeCharge tool-
bars.

CodeCharge comes with a complete IDE interface.
Before publishing any of the pages generated with the
Application Builder, the developer can modify anything
from the HTML to the code. There are 5 different views
of a certain page:

Design - A WYSIWYG editor for manipulating your
page. You can drag and drop different components
right into your page. For example, an input box, or a

submit button.

HTML - Here you can edit the HTML directly. Since
the HTML code is kept separate from the actual server
side code, it's easier to modify any visual elements of a
page.

Code - As expected, this is a fully syntax highlighted
editor. It is less colorful compared to the built-in PHP
show_source() function, but it does the job.

Preview - This mode will display the HTML code with-
out any special tags (seen in the design mode).

Live Page - By providing the URL to the live site, the
page is displayed live from the server.

It's possible to define multiple database connections
in the same project. This can be useful to pull data
from different sources—for example, user data stored in
a MySQL server, and product catalogue data stored in
a different location on Oracle. The code generator
includes support for the following database libraries:
JET, ODBC, JDBC, ADO, DBI, and PHPLib.

The database connection properties was a little con-
fusing to setup. I had some trouble setting up a con-
nection string to a MySQL server. (the product kept on
asking me for a ODBC driver).

One of great features of CodeCharge lies in its flexi-
bility: the user can modify any generated code prior to
publication. All modifications are locked and are not

January 2003 · PHP Architect · www.phparch.com 7

PHP-WIN CodeCharge Studio 1.0

overwritten during any subsequent code generation.
Some of you are probably wondering how good is

this generated code actually is. Lets not forget that it
comes from templates written by other developers—
other than the common files discussed earlier, the rest
of the code is fairly well commented. It can be easily
understood and modified by an intermediate develop-
er—as long as that person understands the language
that the code was generated in. The code language
can be changed at anytime during the development
process. Here's a tip for all of you generating PHP code:
Make sure you define your session.save_path in your
php.ini file prior to previewing your code on the live
server. The PHP code uses session_start() in its com-
mon files. Another thing I noticed is that any modifica-
tions made to the common files will be overwritten—I
guess you can't change the framework.

What CodeCharge does not provide is a debugging
tool. However, the folks at YesSoftware have come up
with some nifty XSL templates to generate code. In the
near future, users will be able to generate their own
templates, themes, components and even wizards
using an SDKthat is currently in the works.

Also, version 2.0 of CodeCharge will be released

shortly, and some of the new features being planned
include:

-Integration with source control and versioning
systems
-VB.NET support
-NT and LDAP authentication
-Generation of site diagrams and test scripts
-Additional components and builders
-Enterprise CRM, CMS and team collaboration
solutions built with CodeCharge Studio

Conclusion

As I suggested before, anyone interested in this appli-
cation should download the trial version and check it
out—there are a lot of other features that I did not have
time to cover in this review. From what I heard version
2.0 is going to be a big upgrade. For its price tag this
code generation application is well worth it. One great
application that I can see this being used for is creating
prototypes of web applications in very short periods of
time. In other words, last minute proposals.

January 2003 · PHP Architect · www.phparch.com 8

php|a

Figure 1

F
E
A

T
U

R
E
S

FEATURES

January 2003 · PHP Architect · www.phparch.com 10

Introduction

When PHP was first developed by Rasmus Lerdorf in
1995, it was a cute little scripting language for form
processing and personal web pages. Everything you
needed was right there in handy global variables.
Although this allowed for rapid development of form
processing scripts, it scaled very poorly due to the lack
of scope control, data abstraction and extensibility.
Inexperienced developers loved it because it was quick
and easy, but the seasoned software engineers cringed
in fear and agony as its popularity gained. There was
no real attempt to support an organized Object
Oriented (OO) structure. When I was first introduced
to PHP, I was a little uncomfortable with its architecture.
It was more like an object spaghetti structure if you
tried to build anything of substance.

The focus went from scripting up pages to building
real software applications.. Developers were actually
starting to build sizable web applications in PHP and it
was not going well. Fortunately, the creator of PHP was
helped out by Andi Gutmans and Zeev Suraski to move
the language to a new stage. It became more than just
a scripting environment. It became a viable develop-
ment platform. The release of version 4 in May 2000
was enhanced for better encapsulation and a reason-
ably sound OO programming environment. But, being

a first release, it was buggy, a bit slower than it needed
to be and it had a lot of other rough edges. Since then,
there has been a lot of good work optimizing and
extending the language beyond its initial buggy and
awkward structure. This has allowed for more tradi-
tional OO frameworks to be created for PHP. This arti-
cle describes the development of one of those frame-
works--the persistence layer.

With the increased use of object classes in PHP, the
need to persist these objects on a permanent basis
becomes apparent. What's the use of objects if you
can't keep them around for a while? Unfortunately,
most common relational databases do not make it easy
to stuff an object in them, nor is it reasonable to store
your objects in the session as sessions tend to disap-
pear. However, the development of a persistence layer
framework in PHP addresses this object persistence
problem. The persistence layer is a collection of classes
that allows developers to store and access objects or
classes from a permanent source. In theory this source
can be a file or memory space but in practice data is

Implementing Database

Persistence Layers in

PHP

By Shawn Bedard
Jig Technologies

The OOP functionality built into PHP makes it possible to access information stored in a database by using a struc-
tured, portable and easily extensible approach--not to mention that you can get rid of those ugly SQL statements

embedded in your scripts!

PHP Version: 4.0 and above

O/S: Any

Additional Software: N/A

REQUIREMENTS

FEATURES Implementing Database Persistence Layers in PHP

generally stored in a database.
First I will explain the concepts of OO programming

and how persistence layers are used for applications
built in that manner. With that foundation, I will out-
line three approaches to designing persistence layers.
Finally, I will describe the architecture of persistence lay-
ers using the robust persistence layer approach and
how it can be applied in common application develop-
ment.

Object Oriented Programming and

Persistence Layers

As previously mentioned, a persistence layer is used
for persisting objects in a permanent fashion. This con-
cept is not a new one--persistence layers have been
very prevalent in more "developed" languages like Java,
C++ and even newer enterprise frameworks like .NET.
However, we have only very recent developments to
thank for PHP's emergence as a real OO architecture,
allowing for constructs such as persistence layers to
become a viable addition to an application.

Although some developers are very familiar with
objects and OO programming, it is worth discussing
just what this is, in order to provide a bit of context.
OO programming is a type of programming in which
programmers define data structures to group related
pieces of data. This data is accessed and acted upon by
accessor functions. In this way, the data structure
becomes an object where internal data is encapsulated
and accessed through these functions. The resulting
created objects can have relationships in a hierarchical
fashion known as inheritance. Thus, objects can inher-
it attributes and functionality from other objects by an
inheritance mechanism. OO programming is the
implementation of this object relationship.

When developing an OO-architected system, it is
often very useful to develop an object model describing
what objects exist in a system. This object model will
also describe how these objects relate to each other.
The object modeling exercise allows architects to view
the system in a graphical format before any code is cre-
ated. This helps to ensure that the application being
built can be extended, maintained and effectively
developed. At the end of the day, what you end up
with is a class (business object) for each of the objects
created in the object model.

One of the principal advantages of OO programming
techniques over their older procedural programming
ancestors is that they enable programmers to create
modules that do not need to be changed when a new
type of object is added. A programmer can simply cre-
ate a new object that inherits many of its features from
existing objects. This makes object-oriented programs
easier to modify.

The other advantage of OO programming is the abil-
ity to pass structured objects instead of long arrays or

miscellaneous groups of variables such as really long
parameter lists in a method call or 32 session variables.
All this is eliminated by architecting a good object
model. The long parameter list gets replaced by a sin-
gle object. The 32 variables in the session can be stored
in 1 or 2 nicely formed objects.

There are, however, some not-so-pleasant qualities of
OO programming in PHP that should be noted. One of
these qualities is the performance hit in creating the
object constructs and calls to access data. However,
the performance hit is no longer a real concern for
most applications as memory prices decrease and
processor speeds increase. So long as your app can
reside in memory and ultra high performance is not a
concern, this performance hit will be negligible.
Another quality is the complexities of storing objects in
common permanent storage mechanisms such as data-
bases and file systems. This complexity can be
abstracted away from the developer in the form of a
persistence layer. A persistence layer will enable the
developer to effectively and easily store business classes
into a permanent storage.

In PHP, it might not always be appropriate to use this
kind of OO programming style. For instance, if you are
simply creating a form with a few fields and passing on
the data in an email, the overhead of an OO framework
is not likely necessary. No data is saved, and no state
really needs to be preserved. Since a persistence layer
is in the business of persisting objects or classes, it does
not make sense to be using it if you don't have any
objects to persist. However, if that form feeds data into
an application that needs to access the data at a later
time, then OO development makes a whole lot of
sense.

Approaches to Persistence Layers

Not all persistence layers are created equal. There are
various approaches to creating this kind of framework.
Some require more effort and are good for larger appli-
cations and some are much lighter weight and are
appropriate for smaller applications.

Hardcoding SQL

The most common and least palatable approach to
developing a persistence layer is hardcoding Structured
Query Language (SQL) in the business classes. (See
Figure 1) Many people develop this type of persistence
layer without even knowing it. To illustrate, lets take
the example of creating a User class or object with the
attributes of name, uid, and pwd. The User class would
need the SQL "select name, uid, pwd from…" embed-
ded in the class to retrieve the necessary data from the
database and a routine to bind the results to the appro-
priate local member variables of the class. Likewise, an
insert, update and delete would require the same kind

January 2003 · PHP Architect · www.phparch.com 11

FEATURES Implementing Database Persistence Layers in PHP

of routine and SQL.
The advantage of this approach is that it allows you

to write code very quickly and it is a viable approach for
small applications and prototypes. The disadvantage is
that it tightly couples business classes with the schema
of your relational database. This would mean that a
simple change such as renaming a column may require
a reworking of the code. In the above User example,
adding a column would require at least six changes to
your code. The insert, update and select would need a
change in the SQL plus each of the local variable
update routines. This would be multiplied by the num-
ber of domain classes that accessed that table. One can
quickly see how maintenance mayhem can develop
with larger systems.

Data Classes

A slightly better approach to developing persistence
layers is where the SQL statements for your business
classes are encapsulated in one or more "data classes."
(See Figure 2) Once again, this approach is suitable for
prototypes and small systems of less than 40 to 50 busi-
ness classes. This helps abstract things a bit more
because one or more domain classes can access a sin-
gle data class. For instance, you could have the domain
classes 'user login' and 'user update' accessing a single
user object. User login would simply call the user
object's 'select' method with the userid and password
set. If a row is found then the login object returns true,

January 2003 · PHP Architect · www.phparch.com 12

Class 2

RDB

Class 1

Class 3

Class 1

SQL

Figure 1 - Hard-coding SQL in your domain/business classes.

Class 2

RDB

Class 1

Class 3

Domain Classes

SQL
Class 2

Class 1

Class 3

Class 4

Data Classes

Figure 2 - Hard-coding SQL in your separate date classes.

FEATURES Implementing Database Persistence Layers in PHP

otherwise a false is returned. The user update would
simply set all the object values and run the update
method.

The major disadvantage here is that SQL and object
update routines are still hardcoded. This means that
adding or removing a column needs to have three or
more SQL statements changed along with the object
updating routines. However, if modeled correctly, this
kind of update will only have to be done once per table
change. This was not the case in our previous example.
Previously, this kind of change had to be done for each
domain class that accessed this table. So, for those
who need to access the same data in 32 different ways
need to change 32 domain classes! Since most folks
are happier to update one object instead of 32, this
new approach makes for a more joyous PHP developer
when DB changes are made. After all, no one likes a
grumpy PHP developer!

Other examples of this approach include developing
stored procedures in the database to represent objects
(replacing the data classes of Figure 2) and Microsoft's
ActiveX Data Object (ADO) "strategy". The best thing
that can be said about this approach is that you have at
least encapsulated the source code that handles the
hard-coded interactions in one place: the data classes.
This approach also helps keep SQL out of the domain
classes, making them more readable.

Unfortunately, not all database systems support
stored procedures-this is particularly true of many
open-source servers like MySQL-and therefore this
approach may not be suitable for your purposes.

Robust Persistence Layer

A robust persistence layer maps objects to persistence
mechanisms in such a manner that simple changes to
the relational schema do not affect your object-orient-

ed code. (See Figure 3) If we use the example above
of adding or removing a column in a table we can see
how our job becomes somewhat easier. If you are
adding a new column to a particular object you do not
have to change the three SQL statements and an
update routine in the code. Instead all that is needed
is to update the one data object to include the extra
local member and the persistence layer takes care of
the rest. All of a sudden, your once-frustrated PHP
developer has started dancing for joy at all the extra
time he has saved in making DB updates. This means
more time to attend rave parties--or whatever it is that
interests PHP developers these days.

The main advantage of this approach is that your
application programmers do not need to know a thing
about the schema of the relational database. In fact,
they do not even need to know that their objects are
being stored in a relational database. This approach
allows your organization to develop large-scale, mission
critical applications. However, there is a performance
impact to your applications--a minor one if you build
the layer well, but there is still an impact.

Example Persistence Layers

Now that several approaches have been outlined at a
high level, we will present details of a particular imple-
mentation. This implementation aims to provide the
robust persistence layer described above. It was devel-
oped to separate the database layer from the business
layer giving three distinct advantages. First, removing
the hardcoded SQL makes the application easier to
extend. Second, complex applications are more main-
tainable because a lot of the data access code is central-
ized in a single location. Finally, code in the business
layer becomes cleaner and more readable.

In practice, it is difficult to build an efficient persist-

January 2003 · PHP Architect · www.phparch.com 13

Class 2

RDB

Class 1

Class 3

Class 4

Domain Classes

SQL

Robust
Persistance Layer

 Figure 3 - Robust data persistence layer.

FEATURES Implementing Database Persistence Layers in PHP

ence layer that will provide the developer with all the
mechanisms available in SQL directly . As such, this
implementation described does not support the com-
plete array of relational DB functionality abstractly.
Support for DB features like grouping, sorting and
internal DB functions can be added to this framework
but this entails extra processing which in turn will lead
to a greater performance hit. Also, the extra code
needed would cause the framework to use more mem-
ory. As a result, this support has not been added into
the framework explicitly.

To avoid the use of "special case" SQL by a PHP devel-
oper within the framework, we can opt to write SQL in
the business classes. If a true OO programming prac-
tice was being adhered to this would not have to be
done. However, this is a compromise between
abstracting the DB away from the business class devel-
oper 100% and developing a framework that is efficient
and lightweight.

There are basically three parts to this framework: con-
figuration, logging and the persistence layer itself. The
configuration drives all the settings for this framework.
It includes things like db connection info and logging
parameters. The logging system is an extremely sim-
plified logging mechanism that outputs informational
messages to a text file specified in the configuration.
The actual persistence layer is a set of objects to be
extended and code that dynamically generates the SQL
to persist object information via the database.

Architecture Details

The actual implementation of the theory is likely to
be of greatest interest to developers looking to use a
persistence layer. Below in figure 4 is the class diagram
for an implementation of a robust persistence layer.
The most interesting classes are those classes that can
be extended to create persistent data objects. Those
objects are DBObject, DBSetObject, and
DBMultiObject.

DBObject basically represents a single row in the
database or a single instance of an object. As such, it
has the ability to select, update, insert, and delete. All

these functions can be used multiple times using a sin-
gle instance of the object. This means that during the
lifetime of this object multiple updates can take place
without recreating the object several times. This is
important for performance in situations where an insert
and many updates need to take place.

DBMultiObject represents a single row of two or
more joined tables in the database. Due to the nature
of this query it is a read only object and can only per-
form selects. Generally this kind of limitation is not a
problem as this kind of access is typically read only any-
way. However, if a write is needed, the ids can be
obtained from the resulting select to create the appro-
priate DBObjects. Since at the end of the day this is
really a join between two tables, a join clause must be
specified to join the tables appropriately. This unfortu-
nate necessity makes this object less of an abstraction
and more complicated for the end developer.
However, it provides flexibility and possible perform-
ance gains over two separate queries.

The DBSetObject object is a utility class for using in
set data. Although by itself this represents a single row
in the database result, it can be used in conjunction
with DBSet or DBMultiSet to provide a representation
for multiple rows. DBSet is used to query multiple rows
in a single table and DBMultiSet is used to query multi-
ple rows in a multiple table join. Due to the latter,
DBSetObject is a read only object and supports select
operations only. Ideally, it would be able to support the
same insert, update and delete as DBObject, but that
would be beyond the scope of this article.

Implementation

Now that you have an idea of how this possible archi-
tecture might work, there's nothing like some good old
fashioned functional implementation examples to clar-
ify things. These examples will illustrate how this
implementation can be used. Let's start with a couple
of tables. For illustration purposes we have chosen user
and address where one address can have many users

January 2003 · PHP Architect · www.phparch.com 14

CREATE TABLE users (
user_id INT PRIMARY KEY

auto_increment,
password varchar(15) default NULL,
first_name varchar(63) default NULL,
last_name varchar(63) default NULL,
client_id varchar(63) default NULL,
address_id INT(2)

) TYPE=MyISAM;

CREATE TABLE address(
address_id INT(2),
street VARCHAR(30),
city VARCHAR(30)

) TYPE=MyISAM;

Figure 5

One of the principal advan-

tages of OO programming

techniques over their older

procedural programming

ancestors is that they enable

programmers to create mod-

ules

FEATURES Implementing Database Persistence Layers in PHP

January 2003 · PHP Architect · www.phparch.com 15

+log(in msg : String)
+make_clause(in clause : String) : String
+make_fields(in f ield_name : String) : String

+object_logger : Logger
+key_name : String

BaseDB

+addKey(in ind : Integer, in name : String, in type : String)
+addField(in idx : Integer, in name : String, in type : String)
+setField(in idx : Integer, in value : String)
+getFieldByName(in name : String) : String
+getField() : String

+Query : Query
+table_name : String
+field_name[] : String
+field_type[] : String
+join_clause : String

BaseDBObject

+select(in clause : String = "") : String[]

DBMultiObject

+DBMultiSet(in objectItem : Object)
+retrieveSet(in clause : String = "")
+getList() : String[]

+objectArray[] : String
+objectItem : Object

DBMultiSet

+select(in clause : String = "") : String[]
+insert()
+delete(in clause : String = "")
+update(in clause : String = "")

DBObject

+DBSet(in objectItem : Object)
+retrieveSet(in clause : String = "")
+getList() : String[]

+objectArray[] : String
+objectItem : Object

DBSet

+getTableName() : String
+getFieldNames() : String[]
+getJoinClause() : String
+getNew Instance() : Object

DBSetObject

+log()

+logfile : String

Logger

+log() : String
+squery(in query : String) : String[][]
+fetch_row () : String[]
+num_row s() : Integer
+insert_id() : Integer

+link_ID : Object
+squery : String = ""
+result : Integer = 0
-query_logger : Object

Query

Persistance Layer Class Diagram

Figure 4 - Class diagram of example implementation

1 <?php
2
3 // Define all the columns as global statics
4 define ("USER_UID", 0);
5 define ("USER_PWD", 1);
6 define ("USER_FNAME", 2);
7 define ("USER_LNAME", 3);
8 define ("USER_CID", 4);
9
10 class Users extends DBObject {
11 function Users () {
12 // Call parent constructor
13 $this->DBObject();
14 // Set the keys and fields
15 $this->log ("Initializing Object as a Users");
16 $this->addKey (USER_UID, "user_id", DB_STRING);
17 $this->addField (USER_PWD, "password", DB_STRING);
18 $this->addField (USER_FNAME, "first_name", DB_STRING);
19 $this->addField (USER_LNAME, "last_name", DB_STRING);
20 $this->addField (USER_CID, "client_id", DB_STRING);
21 // Defing the table to be operated on.
22 $this->table_name = "Users";
23 }
24 }
25
26 ?>

Listing 1 - user.php

FEATURES Implementing Database Persistence Layers in PHP

(see Figure 5).
The easiest thing one might want to do is obtain and

manipulate a single user. As mentioned above,
DBObject gives the developer the ability to insert,
update, select and delete. If these methods are called
with no parameters, these actions will be performed
based upon the value of the key(s). However, the user
has the option to overwrite this functionality by passing

in the 'where' clause. Passing in the clause breaks the
abstraction of this layer but gives the developer the
ability to handle special cases. Listing 1 is an example
of extended DBObject as the file user.php.

Using the object is relatively straight forward. A
select, update and delete looks like Listing 2.

As you can see here, we have done a select, update,
and delete with relatively few lines of code and no SQL.

January 2003 · PHP Architect · www.phparch.com 16

1 <?php
2
3 require "include/pldb/All.php"; // include persistence framework
4 require "include/db_objs/user.php"; //include user object (above)
5
6 // create the user object, set the primary key to 1, and select it to
7 // obtain the data in the object.
8 $user = new Users();
9 $user->setField(USER_UID,1);
10 $user->select();
11
12 // print out some info.
13 echo $user->getField(USER_FNAME)." "$user->getField(USER_LNAME);
14 echo "has the userid ". $user->getField(USER_UID)
15
16 // update a field and update save it to the database.
17 $user->setField(USER_UID,"newuserid");
18 $user->update();
19
20 // print out some info and notice the change.
21 echo $user->getField(USER_FNAME)." "$user->getField(USER_LNAME);
22 echo "has the userid ". $user->getField(USER_UID)
23
24 // delete that object from the database
25 $user->delete();
26
27 ?>

Listing 2

1 <?php
2
3 // Define all the columns as global statics
4 define ("USERLIST_UID", 0);
5 define ("USERLIST_PWD", 1);
6 define ("USERLIST_FNAME", 2);
7 define ("USERLIST_LNAME", 3);
8 define ("USERLIST_CID", 4);
9
10 class UserList extends DBSetObject {
11 function UserList () {
12 // Call parent constructor
13 $this->DBSetObject();
14
15 $this->log ("Initializing Object as a UserList");
16
17 $this->addKey (USERLIST_UID, "user_id", DB_STRING);
18 $this->addField (USERLIST_PWD, "password", DB_STRING);
19 $this->addField (USERLIST_FNAME, "first_name", DB_STRING);
20 $this->addField (USERLIST_LNAME, "last_name", DB_STRING);
21 $this->addField (USERLIST_CID, "client_id", DB_STRING);
22 $this->table_name = "Users";
23
24 }
25 function getNewInstance() {
26 return new UserList();
27 }
28 }
29
30 ?>

Listing 3 - An example of the UserList extending DBSet in the file userlist.php

FEATURES Implementing Database Persistence Layers in PHP

The business class developer has a very readable clean
set of code. In addition, developing further functional-
ity using this object is very quick and easy.

Those of you who are familiar with this type of work
know that it is not always practical to retrieve one
object at a time. It is often necessary to use a collec-
tion of objects. This is often used for listing out infor-
mation in the system. The DBSet and DBSetObject
objects are used for this type of listing. For the
moment these collections are read only so only the
select feature can be used. Listing 3 is an example of
the UserList extending DBSet in the file userlist.php.

Like DBObject, the select statement can be passed a
'where' clause to specify which rows to retrieve.
However, if no clause is specified then this call will sim-
ply retrieve all the rows in the table specified. Using the
object is a bit more complicated because the results are
returned in an object array. So accessing the data must
be done in an iterative fashion like the for loop illustrat-

ed in Listing 4.
Although this example has SQL, it is not necessary if

the desire is to retrieve all the rows from the table.
Again, most of the details about how the data is being
retrieved have been abstracted away from the develop-
er making the code simpler and more readable. If the
developer wanted to retrieve another list from the
table, no new objects would need to be created, as the
userlist object could be reused again.

It is often desirable to obtain data from two or more
different tables during the same transaction. In some
cases it is possible to retrieve the required data with one
access to the database. For performance reasons one
query is usually preferred over two or more. This imple-
mentation has taken this possibility into account, in
addition to queries across multiple tables. The
DBSetObject and the DBMultiObject allow users to
specify multiple tables in the form of a join clause. An
example of the DBSetObject being extended is shown

January 2003 · PHP Architect · www.phparch.com 17

1 <?php
2
3 require "include/pldb/All.php"; // include persistence framework
4 require "include/db_objs/userlist.php"; //include user object (above)
5
6 // create the user object, set the primary key to 1, and select it to
7 // obtain the data in the object.
8 $userlist = new DBSet(new UserList());
9 $userlist->retrieveSet("where user_id > 0");
10 $ulArray = $userlist->getList();
11
12
13 // print out some info.
14 foreach($ulArray as $key => $valueObj) {
15 echo "User's ID:".$valueObj->getField(USER_UID)."
";
16 echo "User's First Name:".$valueObj->getField(USER_FNAME)."
";
17 }
18
19 ?>

Listing 4 - Accessing data

1 <?php
2
3 define ("TU","users");
4 define ("TA ","address");
5 class UserMultiList extends DBSetObject {
6 function UserMultiList () {
7 // Call parent constructor
8 $this->DBSetObject();
9
10 $this->log ("Initializing Object as a UserMultiList");
11
12 $this->addKey (USERLIST_UID, TU.".user_id", DB_STRING);
13 $this->addField (USERLIST_PWD, TU.".password", DB_STRING);
14 $this->addField (USERLIST_FNAME, TU.".first_name", DB_STRING);
15 $this->addField (USERLIST_LNAME, TU.".last_name", DB_STRING);
16 $this->addField (USERLIST_CID, TU.".client_id", DB_STRING);
17
18 $this->addField (USERLIST_CITY, TA.".city", DB_STRING);
19 $this->addField (USERLIST_STREET, TA.".street", DB_STRING);
20 $this->join_clause = TU." LEFT JOIN ".TA." ON ".TU.".
21 user_id=".TA.".address_id";
22 }
23
24 ?>

Listing 5 - An example of the DBSetObject being extended

FEATURES Implementing Database Persistence Layers in PHP

in Listing 5.
Like DBSet the retrieveSet method can be passed a

where clause to specify which rows to retrieve.
However, if no clause is specified then this call will sim-
ply retrieve all the rows in the table join specified. As
before, accessing data must be done in an iterative
fashion like the for loop illustrated in Listing 6.

As you can see, there is no SQL code in this listing. All
the details of the data layer have been abstracted away
from the developer.

Concluding Remarks

Hopefully, this article provides some insight as to why
a persistence layer is useful as well as some insights to
various implementations. This kind of implementation
is not at all useful for a 'build-a-form-in-fifteen-minutes'
kind of project. However, if you find yourself building
larger applications with a complex set of logic in the
backend, this abstraction layer is invaluable in trying to
keep your application maintainable.

As shown in the example above, you can easily per-
sist objects using a database with little or no SQL and
very little PHP code. This allows the developer to cre-
ate applications that are maintainable and extendable.
Furthermore, faster development will be facilitated by
abstracting away the complexities of persisting an
object via a database. These advantages are best
achieved using the third approach. Using frameworks
like this will allow developers to build PHP applications
that can quickly adapt to the changing requirements of
software.

Acknowledgments

I would like to thank Raymond Gigliotti for helping
produce some of the PHP code for the persistence layer
example. Also, I would like to thank Nancy Lam for
helping to better formulate my ideas for this article.

January 2003 · PHP Architect · www.phparch.com 18

1 <?php
2
3 $userMultiList = new DBMultiSet(

new UserMultiList());
4 $userMultiList->retrieveSet("");
5 $ulMultiArray = $userMultiList->getList();
6
7 foreach($ulMultiArray as $key => $valueObj) {
8 echo $valueObj->getField(USER_UID);
9 echo $valueObj->getField(USER_STREET);
10 }
11
12 ?>

Listing 6

Shawn Bedard is a senior architect based in Toronto, Canada. The
code he presents in this article is based on his database persistence layer
code available at https://sourceforge.net/projects/dbpl. You can reach
Shawn at sabedard@jig.to.

php|a

Anyone can teach PHP. But getting
your hands on the keyboard is the
quickest and surest way for you to
l e a rn everything from PHP and
MySQL to advanced topics like class-
es, objects, templates, and PDFs.

T h a t ’s what we do at TA PI n t e rn e t .
You walk in. Sit down. Grab a

k e y b o a rd. You walk out feeling confident that you can
handle anything the PHP/MySQL world can throw at you.

FI V E D AY S O F PU R E PL E A S U R E.
Tap Internet provides everything you need: Hands-on

building of dynamic web sites in a lab designed specifically
for teaching. Eight hours of daily instruction for five full
days. Over 40 hours of hands-on topics ranging fro m
basic PHP to output buffering and template techniques.

DI D W E NE G L E C T T O ME N T I O N FU N?
E v e rything is designed to keep you motivated and

l e a rning, including ‘Quick Challenges’ that give you a re a l l y
good feel for how to use the language. It keeps things
i n t e resting. Heck, it keeps y o u i n t e resting, because you’re
interacting with other students as you learn .

Scott Nichols from Shoe Carnival told us that what he
liked best was, “...the personal attention and ability to ask
questions ... I was treated as a guest.”

Not exactly what you’d expect from a geek, eh?

LO G O N NO W T O LE A R N MO R E.
Want to master PHP/MySQL in a heart b e a t ? T h e n

beat it on over to http://www. t a p i n t e rnet.com/php and see
how much more there is to TA PI n t e rn e t .

Or give any of the guys a call: 1-866-745-3660.
But do it now. The next course is about to begin.

It feels be t t e r
when the y

let you touch it.

TA P I N T E R N E T
P H P C O U R S E S

HA N D S-O N T R A I N I N G F R O M T H E G E T-G O.
CO-S P O N S O R E D B Y ZEND TE C H N O L O G I E S

Classes enrolling now. 1-866-745-3660
h t t p : / / w w w. t a p i n t e rn e t . c o m / p h p /

F
E
A

T
U

R
E
S

FEATURES

January 2003 · PHP Architect · www.phparch.com 19

The Windows API provides a collection of functions
spread across several DLLs allowing a programmer

to perform any Windows task: constructing and manip-
ulating windows and graphical widgets, accessing the
file system, accessing networking configuration and
reading and writing the registry and event log. Many of
these features are not (yet) provided for by PHP exten-
sions, but a new experimental extension, w32api
(Windows 32 API) allows PHP programmers to call the
functions and member objects of any Windows DLL.
This extends both the features of the Windows platform
and the myriad of libraries built on it to PHP program-
mers.

Using the w32api Extension

The w32api extension contains only 5 functions, one
of which is defunct as of PHP 4.2.3:

bool w32api_deftype (
String TypeName,
String MemberType,

String MemberName)

Used to define a data type for use with other w32api
functions. Any number of MemberType and
MemberName arguments may be passed, one for each

member variable of the type. For those unfamiliar with
data types, they are a collection of variables of differing
types, accepted as arguments of some Windows API
functions.

resource w32api_init_dtype(

String TypeName, Mixed Value)

Used to create an instance of a data type defined with
w32api_deftype(). Any number of Value arguments
may be passed, one for each member variable of the
type.

bool w32api_register_function (
String Library,
String FunctionName,

String ReturnType)

Used to register functions from the Windows API or
other windows DLLs. The Library argument should be
the name of the DLL containing the function. The path
to the DLL is not required as this is provided by the

Accessing the Windows

API and other Dynamic

Link Libraries

By David Jorm

All intrinsic and most third party libraries for Windows are DLLs (Dynamic Link Libraries). DLLs are a compiled set of
functions or objects, similar conceptually to UNIX’s .so (Shared Object) files. This article shows you how you can take

advantage of them from within PHP.

PHP Version: 4.0 and above

O/S: Windows

Additional Software: N/A

REQUIREMENTS

FEATURES Accessing the Windows API & other DLLs

DLL’s registry entry. Most Windows API functions have
two names, one of which is an alias. When giving the
FunctionName argument, the alias must be used. For
example, you would use “MessageBeepA” instead of
“MessageBeep”. The ReturnType argument must be
either string, long, int or bool.

mixed w32api_invoke_function (
String FunctionName,

String FuncArgument)

Defunct as of PHP 4.2.3, used to invoke a function
registered with w32api_register_function().
Any number of FuncArgument arguments may be
passed, one for each argument accepted by the
Windows API function being called. Functions regis-
tered with w32api_register_function() are
now available as normal PHP functions, called by the
name with which they were registered, so this function
is no longer required.

void w32api_set_call_method (Int Method)

Sets the call method used by the w32api extension.
The Method argument must be one of the constants
DC_CALL_CDECL or DC_CALL_STD. DC_CALL_STD is
the default.

To explore these functions, we will cover three exam-
ples:

1. A site logging security violations to the
event log

3. A page displaying windows system
information

2. Enhancements to a command line
application using the Windows API

Accessing the Event Log

The Windows platform contains an integrated log-
ging and log management framework called the Event
Log. The Event Log provides a standard, centralized
mechanism for all applications to record software and
hardware events. When an error occurs, the system
administrator must determine what caused the error,
attempt to recover any lost data and prevent the error
from recurring. It is helpful to this process if both the
operating system and userland applications record sig-
nificant events. The system administrator can use the
event log to help determine what conditions caused
the error and the context in which it occurred.

Event Log Design

The Event Log is comprised of five key components:

Three Log Files: Application, System and Security
The Event Log data is stored in seperate flat log files for
each category of event. It is possible to add extra log
files representing different categories of events, but this
is not normally required.

The Event Log Viewer: The Event Log Viewer is an
administrative tool that ships with Windows NT, 2000
and XP that is used to view, filter and manage the con-
tents of the event log files.

Windows API Functions: The Windows API exposes
functions from advapi32.dll providing the program-
matic ability to read and write to and from the event
log and to register and unregister event sources.

Binary Format Message Files: The messages given
by each event source are defined using ASCII text in a
binary format message file. This is a DLL built by the
Visual Studio MC (Message Compiler), which automat-
ically assigns numbers to each message and generates
a table of the message text. The event logging func-
tions provided by the Windows API use the messages
defined in this file to write the description of each event
to the event log. Message files allow for text in various
languages to be set as the description of each event.
The event logging service will write the description to
the event log in the language appropriate to the oper-
ating system’s native language.

Event Source Registry Entries: Each application or
service writing to the event log should have its own
event source. Event sources are defined in the registry
by creating a subkey underneath:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Serv

ices\Event Log\{Log Name}\{Event Source Name}

This subkey must have two values:

EventMessageFile: A REG_SZ value of the
absolute path (environment variables allowed)
to the message file DLL containing the event
descriptions for this event source.

TypesSupported: A REG_DWORD value repre-
senting which event types are supported by

January 2003 · PHP Architect · www.phparch.com 20

w32api (Windows 32 API)

allows PHP programmers to

call the functions and member

objects of any Windows DLL

FEATURES Accessing the Windows API & other DLLs

this event source. This is a bitmask created by
ORing one or more of the values shown in
Figure 1. For example, Error, Warning and
Information types have the value 0x0007.

Building a Message File

The first step to building a message file is to create an
.mc file defining the message resource table. This is
simply an ASCII text file with an entry for each event in
the format shown in Figure 2.

For our example web application, the .mc file should
be as shown in Figure 3.

Compiling this message file into a resource-only DLL
(the most efficient kind) is then a three step process,
assuming the .mc file is named messages.mc:

1. Use the Message Compiler to create an .rc file from
the .mc file using the command:

mc messages.mc

January 2003 · PHP Architect · www.phparch.com 21

Event Type Value

Error 0x0001

Warning 0x0002

Information 0x0004

Audit Success 0x0008

Audit Failure 0x0010

Figure 1

Text Entry Purpose

Comment Here Comments are preceded by

MessageID=0x1
Hexadecimal value of the Message ID

Severity=Warning
Severity of this event. Can be Error, Warning, Success or
Information

SymbolicName=WWW_AUTH_FAILURE Name of the event.

Language=English Language of the message description.

A user has failed to authenticate
for the web application.

Description of the event.

. Single period to terminate the message.

Figure 2 - .mc file format and description

MessageId=0x1
Severity=Warning
SymbolicName=WWW_AUTH_FAILURE
Language=English
A user has failed to authenticate for the web application.
.
MessageId=0x2
Severity=Success
SymbolicName=WWW_AUTH_SUCCESS
Language=English
A user has successfully authenticated for the web application.
.
MessageId=0x3
Severity=Error
SymbolicName=WWW_AUTH_NOFILE
Language=English

The web application was unable to open the authentication file.

.

Figure 3 - message.mc file

FEATURES Accessing the Windows API & other DLLs

This should create two files:

MSG00001.bin

messages.rc

2. Use the Resource Compiler to create a .res file from
the .rc created by the Message Compiler:

rc -r -fo messages.res messages.rc

3. Use the linker to create a .dll file:

link -dll -noentry -out:messages.dll messages.res

Using these options will create a resource-only DLL.
These are smaller and faster than normal DLLs. Finally,
messages.dll should be copied to C:\WINNT\System32\.

Creating an Event Source

The next step is to link the message file DLL we have
created to the name of the event source. This is done
by creating a single key in the windows registry. Since
the web application will want to log to the ‘Application’
log with a source name of ‘WebApp’ this key will be:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Serv
ices\Event Log\Application\WebApp

The key will require values:

Name: EventMessageFile
Type: REG_SZ
Data: %SystemRoot%\System32\messages.dll

Name: TypesSupported
Type: REG_DWORD
Data: 7

%SystemRoot% will be substituted by the system’s
root directory, by default C:\WINNT. This key can be
added manually using regedit or by creating a .reg file
and importing it into regedit. Neither of these tasks are
within the scope of this article.

Reporting Events

Reporting an event is a three step process, involving
registering an event source, reporting an event from
that event source and, finally, deregistering the event
source. These tasks are handled by three functions
exposed by advapi32.dll:

long RegisterEventSourceA (String ServerName,
String SourceName)

long ReportEventA (Long LogHandle,
Long Type,
Long Category,
Long EventID,
Mixed UserID,

Long NumStrings,
Long DataSize,
Long Strings,
Mixed RawData)

long DeRegisterEventSource (Long LogHandle)

The LogHandle argument of ReportEventA()
must be a handle returned by
RegisterEventSourceA(). The NumStrings,
DataSize, Strings and RawData arguments are all
used to provide strings of additional data with an event
report. This data is shown in the Event Viewer as either
bytes or DWORDs. This article only covers events with-
out strings of additional data attached.

Putting It All Into a Class

Since event logging is a clumsy process to replicate
each time an event is reporting, we can simplify mat-
ters by creating and event logging class, as shown in
Listing 1.

Building The Authentication Page

The final step is to construct a HTML form accepting
a user’s authentication credentials so we can authenti-
cate them and report the triggered events to the event
log. This is done in Listing 2.

Console Enhancements

Although PHP contains intrinsic functions allowing
for the display and collection of data on a command
line console, the Windows API can enhance this func-
tionality for Windows console applications. API calls
including message boxes and sounds can be used to
create PHP console applications with the same interface
and features of native windows console applications.

Console Title

Setting and retrieving the title of a command line
console is one of the easiest tasks within the Windows
API. Many functions require, as we have seen earlier,
user defined types and constants to work, neither of
which are required for this task. The Windows API
exposes two functions from kernel32.dll used to set and
retrive a console title:

bool SetConsoleTitleA (String Title)

long GetConsoleTitleA (String TitleBUffer,

Long BufferLength)

There are two important points to note with these
functions. The first point is that the first argument taken

January 2003 · PHP Architect · www.phparch.com 22

FEATURES Accessing the Windows API & other DLLs

by GetConsoleTitleA() is a buffer to contain the
string returned by the function, while the function’s
return code is an indicator of success. When providing
a buffer using a language with explicitly typed variables
such as C or Visual Basic, you must fill the buffer with
space characters in order for it to be long enough to
hold the required data. AlthoughPHP uses scalar vari-
ables, the buffers must still be spaced out in orderto
work with the Windows API. This can be done easily
using str_repeat(). The following line of code
would fill $TitleBuffer with 255 space characters:

$TitleBuffer = str_repeat(“ “, 255);

Secondly, when using SetConsoleTitleA(), the
console title will only remain set while the program has
control of the console. Once the program exits and
control returns to cmd.exe, the console title reverts to
that set by cmd.exe.

Sounds

Basic waveform sounds can be played using the
MessageBeep() function from user32.dll. This func-

January 2003 · PHP Architect · www.phparch.com 23

1 <?php
2
3 class eventlog {
4
5 // Properties
6 // Build an array of the log type constants and their corresponding values
7 var $log_types=array(
8 array(�EVENTLOG_SUCCESS�, 0),array(�EVENTLOG_ERROR_TYPE�, 1),
9 array(�EVENTLOG_WARNING_TYPE�, 2), array(�EVENTLOG_INFORMATION_TYPE�, 4),
10 array(�EVENTLOG_AUDIT_SUCCESS�, 8), array(�EVENTLOG_AUDIT_FAILURE�, 10)
11);
12 var $logtype;
13 var $hEventLog;
14
15 // Constructor
16 function eventlog() {
17
18 // Register w32api functions
19 w32api_register_function(�advapi32.dll�, �RegisterEventSourceA�, �long�);
20 w32api_register_function(�advapi32.dll�, �ReportEventA�, �long�);
21 w32api_register_function(�advapi32.dll�, �DeregisterEventSource�, �long�);
22
23 // Register event source
24 $this->hEventLog=RegisterEventSourceA(NULL, �WebApp�);
25 }
26
27 // Report Event Method
28
29 function reportevent($eventid, $logtype) {
30 $logtypefound=false;
31
32 // Match the string log type passed to a value from the array of constants
33 for ($i=0; $i<sizeof($this->log_types); $i++) {
34 if ($this->log_types[$i][0] == $logtype) {
35 $this->logtype=$this->log_types[$i][1];
36 $logtypefound=true;
37 }
38 }
39 if (!$logtypefound)
40 return false;
41
42 // Report the event
43 if (!ReportEventA($this->hEventLog, $this->logtype, 0, $eventid, NULL, 0, 0, NULL, NULL))

return false;
44 return true;
45 }
46
47 // Destructor
48 function destructor() {
49
50 // De register the event source
51 DeregisterEventSource($this->hEventLog);
52 }
53 }
54 ?>

Listing 1

FEATURES Accessing the Windows API & other DLLs

January 2003 · PHP Architect · www.phparch.com 24

1 <html>
2 <head>
3 <title>Authentication Form</title>
4 </head>
5 <body>
6 <!� Begin dynamic content �!>
7 <?php
8 $u='testuser';
9 $p='testpass';
10 // Instantiate an eventlog object
11
12 if (isset($u) && isset($p)) {
13 if (auth($u, $p)) {
14 echo "<h2>Authentication Successfull!</h2>\n</body></html>\n";
15
16 // Instatiate an eventlog object, report the event and destroy the object
17 $el_obj = New eventlog();
18 $el_obj->reportevent(2, "EVENTLOG_INFORMATION_TYPE");
19 $el_obj->destructor();
20 unset($el_obj);
21 exit;
22 } else {
23 echo "<h2>Authentication Failed</h2>\n";
24
25 // Instatiate an eventlog object, report the event and destroy the object
26 $el_obj = New eventlog();
27 $el_obj->reportevent(1, "EVENTLOG_WARNING_TYPE");
28 $el_obj->destructor();
29 unset($el_obj);
30 }
31 }
32
33 function auth($u, $p) {
34 if ($u == 'testuser' && $p == 'testpass')
35 return true;
36 return false;
37 }
38
39 class eventlog {
40
41 // Properties
42 // Build an array of the log type constants and their corresponding values
43 var $log_types=array(
44 array("EVENTLOG_SUCCESS", 0), array("EVENTLOG_ERROR_TYPE", 1),
45 array("EVENTLOG_WARNING_TYPE", 2), array("EVENTLOG_INFORMATION_TYPE", 4),
46 array("EVENTLOG_AUDIT_SUCCESS", 8), array("EVENTLOG_AUDIT_FAILURE", 10));
47 var $logtype;
48 var $hEventLog;
49
50
51 // Constructor
52 function eventlog() {
53
54 // Register w32api functions
55 w32api_register_function("advapi32.dll", "RegisterEventSourceA", "long");
56 w32api_register_function("advapi32.dll", "ReportEventA", "long");
57 w32api_register_function("advapi32.dll", "DeregisterEventSource", "long");
58
59 // Register event source
60 $this->hEventLog=RegisterEventSourceA(NULL, "WebApp");
61 }
62
63 // Report Event Method
64 function reportevent($eventid, $logtype) {
65 $logtypefound=false;
66
67 // Match the string log type passed to a value from the array of constants
68 for ($i=0; $i<sizeof($this->log_types); $i++) {
69 if ($this->log_types[$i][0] == $logtype) {
70 $this->logtype=$this->log_types[$i][1];
71 $logtypefound=true;
72 }

Listing 2

Continued On Page 25...

tion is designed for use when notifying the user of an
error, so only a few sounds are available. These sounds
are defined by constants passed as the only argument
to the function:

bool MessageBeep(Unsigned Integer SoundType)

The possible values of SoundType are shown in Figure
5.

The wave file played for each sound is defined by an
entry in the registry. This can be edited easily using the
‘Sound Events’ section of the ‘Sounds and Multimedia’
control panel.

Message Boxes

Although constructing windows and positioning
widgets within Windows is a complex process, simple
windows such as message boxes and common dialog
boxes can be constructed and displayed in just one
Windows API call. Message boxes are particularly use-
full for displaying errors or usage information for a
command line program. They can be created using the
MessageBoxA() function from user32.dll:

long MessageBoxA (Long WindowHandle,

String Text,
String Caption,
Long WindowType)

The WindowHandle argument can be null (use the
intrinsic PHP constant NULL). The WindowType argu-
ment must be one of the constants listed in Figure 5.

A Simple Integrity Tool

Our sample command line application to which we
can apply these enhancements is an integrity tool
checking that a file’s md5 checksum matches that of a
known good state. It’s shown in Listing 3.

Applying the Enhancements

This console application can be enhanced using the
three features of the Windows API we just examined.
The application can set the console title while it is run-
ning, emit a sound when a checksum mismatch is
found and display errors in a message box instead of on
the console. Listing 4 shows our enhanced integrity
tool.

FEATURES Accessing the Windows API & other DLLs

January 2003 · PHP Architect · www.phparch.com 25

72 }
73 }
74 if (!$logtypefound)
75 return false;
76
77 // Report the event
78 if (!ReportEventA($this->hEventLog, $this->logtype, 0, $eventid, NULL, 0, 0, NULL, NULL))

return false;
79 return true;
80 }
81
82 // Destructor
83 function destructor() {
84 // De register the event source
85 DeregisterEventSource($this->hEventLog);
86 }
87 }
88
89 ?>
90 <!� End dynamic content �!>
91 <form action="eventlog.php" method="post">
92 <table border="0" cellspacing="3" cellpadding="3">
93 <tr>
94 <td>Username:</td>
95 <td><input type="text" name="u"></td>
96 </tr>
97 <tr>
98 <td>Password:</td>
99 <td><input type="text" name="p"></td>
100 </tr>
101 <tr>
102 <td colspan="2"><input type="submit" value="Authenticate"></td>
103 </tr>
104 </table>
105 </form>
106 </body>
107 </html>

Listing 2: Continued From Page 24...

FEATURES Accessing the Windows API & other DLLs

Windows System Information

One of the key uses of the Windows API is to set and
retrieve system information such as configuration infor-
mation, performance counters and operating system
build numbers. In this example we will build a HTML
page generated by PHP displaying several elements of
system information, including some that must be
extracted from a user defined data type.

System Information Functions

Several functions for viewing system information are
exposed by kernel32.dll, some allowing a single piece

of information to be retrieved, others filling a type with
several elements of data. Just a few of these functions
will be used in this example:

void GetSystemInfo (SYSTEM_INFO SysInfo)

long GetSystemDirectoryA (
String Buffer, Long BufferSize)

long GetVersion()

Note that the GetSystemDirectoryA() function
accepts a buffer as an argument. This must be spaced
out using str_repeat() before being passed to the
function, as discussed in example 2. Two important
things should be noted about the GetSystemInfo()
function. Firstly, it is a subroutine rather than a func-

January 2003 · PHP Architect · www.phparch.com 26

Constant Value Meaning

-1 Simple Beep

MB_OK 0 Default Sound

MB_OCONASTERISK 64 Asterisk Sound

MB_ICONEXCLAMATION 48 Exlamation Sound

MB_ICONHAND 16 Hand Sound

MB_ICONQUESTION 32 Question Sound

Figure 5

1 <?php
2
3 // Define our files and their known good checksums
4
5 $files=array(
6 array('C:\WINNT\explorer.exe', '6fd321ccbd0eeb6189c714443b215c64'),
7 array('C:\WINNT\php.ini', 'd21410157a5a20242e408d048a301c37')
8);
9
10 // Loop through each file, notifying if it differs from the known good state
11
12 for ($i=0; $i<sizeof($files); $i++) {
13
14 // If the file does not exist, display an error and exit
15
16 if (!file_exists($files[$i][0])) {
17 echo('Unable to hash file: ' . $files[$i][0]);
18 sleep(1);
19 exit;
20 }
21 if (md5_file($files[$i][0]) != $files[$i][1]) {
22 echo "Checksum mismatch for file: " . $files[$i][0] . "\n";
23 }
24 }
25
26 ?>

Listing 3

FEATURES Accessing the Windows API & other DLLs

tion, so essentially returns void, although this is not a
return type accepted by w32api_register_func-
tion(). Instead, the type ‘bool’ can be used.
Secondly, SYSTEM_INFO is a user defined data type
containing several long integer elements. It is defined
using w32api_deftype() as shown in Figure 6:

Although w32_api functions can be used to define
and enumerate types, there is no capacity to retrieve a
type’s individual elements.

User Defined Data Types

The w32api_deftype() and
w32api_init_dtype() functions return/refer to
user defined data types as a dynaparm PHP resource.
PHP resources are user defined data types stored inter-

nally in the Zend engine whose member elements are
retrieved using abstraction functions within the Zend
engine. Since there are no PHP functions to extract the
elements of a dynaparm resource, the only way to
extract a type’s element is to write a PHP extensional-
lowing this or address the type as a PHP scalar variable
and manually unpack its contents. The latter is by far
the easiest. A type is simply a binary string assembled
by concatenating the binary strings of its member ele-
ments. For example, an enumerated SYSTEM_INFO
type appears as a binary string which appears in
hexdecimal (run through bin2hex()) as:

000000000010000000
000100fffffe7f0100
0000010000004a0200
000000010006000608

January 2003 · PHP Architect · www.phparch.com 27

1 <?php
2
3 // Define Windows API Constants
4 define("MB_ICONEXCLAMATION", 48);
5
6 // Define our files and their known good checksums
7 $files=array(
8 array('C:\WINNT\explorer.exe','6fd321ccbd0eeb6189c714443b215c64'),
9 array('C:\WINNT\php.ini', 'd21410157a5a20242e408d048a301c37')
10);
11
12 // Register Windows API functions
13 w32api_register_function("kernel32.dll", "SetConsoleTitleA", "bool");
14 w32api_register_function("user32.dll", "MessageBeep", "bool");
15 w32api_register_function("user32.dll", "MessageBoxA", "long");
16
17 // Set the console title
18 SetConsoleTitleA("PHP Integrity Tool");
19
20 // Loop through each file, notifying if it differs from the known good state
21 for ($i=0; $i<sizeof($files); $i++) {
22
23 // If the file does not exist, display an error and exit
24 if (!file_exists($files[$i][0])) {
25
26 // Display this error in a message box
27 MessageBoxA(NULL, 'Unable to hash file: ' . $files[$i][0],
28 "PHP Integrity Tool", MB_ICONEXCLAMATION);
29 sleep(1);
30 exit;
31 }
32 if (md5_file($files[$i][0]) != $files[$i][1]) {
33 echo "Checksum mismatch for file: " . $files[$i][0] . "\n";
34
35 // Emit an Exclamation sound
36 MessageBeep(MB_ICONEXCLAMATION);
37 }
38 }
39
40 ?>

Listing 4

w32api_deftype("SYSTEM_INFO", "long", "dwOemID", "long", "dwPageSize",
 "long", "lpMinimumApplicationAddress", "long",
 "lpMaximumApplicationAddress", "long", "dwActiveProcessorMask", "long",
 "dwNumberOfProcessors", "long", "dwProcessorType", "long",
 "dwAllocationGranularity", "long", "dwReserved");

Figure 6

FEATURES Accessing the Windows API & other DLLs

This string can be unpacked into its member ele-
ments using the PHP unpack() function:

array unpack (String Format, String Data)

The Format argument is a format string defining
how the data should be broken up, with each element
defined by the format string being returned as a named
element of an array. Format strings are a complex topic
not within the scope of this article, but in simple terms
the string is comprised of a data type, element name
and delimiter character for each element. For example,
a long element named mylong and a string element
named mystring would be extracted with the format
string “lmylong/smystring”.

A Page Displaying

System Information

Once problems such as buffer handling and type ele-
ment retrieval have been overcome, assembling a page
that displays system information is a relatively easy
process. Since the name of each element of the SYS-
TEM_INFO type must be used twice, once to generate

the format string and once to extract the named ele-
ments of the array returned by unpack(), we will
build an array of the elements which can be looped
through in each case. Listing 5 shows a small PHP script
that performs these tasks.

Conclusion

The Win32 API interface provided by PHP makes a
great number of powerful functions available to your
scripts. Although taking advantage of this functionality
will limit the portability of your code, depending on the
type of application you are writing it might well be
worth it!

January 2003 · PHP Architect · www.phparch.com 28

David works as a document imaging and OCR programmer for a small
Australian company. He spends his spare time writing PHP code and
studying environmental science.

php|a

1 <!� HTML before dynamic content �!>
2 <html>
3 <head>
4 <title>Windows System Information</title>
5 </head>
6 <body>
7 <h1>Windows System Information</h1>
8 <table border="1">
9 <th>Property</th>
10 <th>Value</th>
11 <!� Begin dynamic content �!>
12 <?php
13
14 // Since we are using a scalar to hold the value of the SYSTEM_INFO type, no
15 // types need to be defined or enumerated.
16
17 // Register Windows API functions
18
19 w32api_register_function("kernel32.dll", "GetSystemInfo", "bool");
20 w32api_register_function("kernel32.dll", "GetSystemDirectoryA", "long");
21 w32api_register_function("kernel32.dll", "GetVersion", "long");
22
23 // Build an array of all elements in a SYSTEM_INFO type
24
25 $type_elements=array("dwOemID", "dwPageSize", "lpMinimumApplicationAddress",
26 "lpMaximumApplicationAddress", "dwActiveProcessorMask",
27 "dwNumberOfProcessors", "dwProcessorType",
28 "dwAllocationGranularity", "dwReserved");
29
30 // Space out the buffer to allow it to hold the contents of a SYSTEM_INFO type
31
32 $buf=str_repeat(' ', 255);
33
34 GetSystemInfo($buf);
35
36 // Loop through each element of the type, building a format string
37
38 $first_element=true;

{

Listing 5

Continued On Page 29...

FEATURES Accessing the Windows API & other DLLs

January 2003 · PHP Architect · www.phparch.com 29

39 for ($i=0; $i<sizeof($type_elements); $i++) {
40 if (!$first_element)
41 $unpack_str .= "/";
42 else
43 $unpack_str="";
44 $unpack_str .= "l" . $type_elements[$i];
45 $first_element=false;
46 }
47
48 // Unpack the SYSTEM_INFO type
49 $arr=unpack($unpack_str, $buf);
50
51 // Loop through each element of the type, displaying its value in a HTML table
52
53 for ($i=0; $i<sizeof($type_elements); $i++) {
54 echo "<tr><td>" . $type_elements[$i] . "</td><td>" .
55 $arr[$type_elements[$i]] . "</td></tr>\n";
56 }
57
58 // Space out a buffer again for use with GetSystemDirectoryA()
59
60 $buf=str_repeat(' ', 64);
61
62 // Run our other Windows API functions and display their results in a HTML table
63 GetSystemDirectoryA($buf, strlen($buf));
64
65 echo "<td>SystemDirectory</td><td>" . $buf . "</td></tr>\n";
66
67 echo "<tr><td>Version</td><td>" . GetVersion() . "</td></tr>\n";
68
69 ?>
70 <!� End dynamic content �!>
71 </table>
72 </body>
73 </html>

Listing 5: Continued From Page 28...

F
E
A

T
U

R
E
S

FEATURES

January 2003 · PHP Architect · www.phparch.com 30

In the past, developers tried to accomplish this with a
tool like htdig or some home-grown indexing library

written in C or Perl. In the end, they could only do so
much with regular expressions and very creative SQL
'like' queries. Some of us went as far as creating 'bad
words' tables with a dictionary, mapping these into a
lookup table, with an initial parser to break up sen-
tences to make it all work.

MySQL 4.0 to the rescue

The development and beta release of MySQL 4.0
brings some welcome text indexing features to the
open source community. Although the 3.23 version
does allow for full-text indexing, version 4.0 added
some mature enhancements like moving configuration
options to the config files and allowing fully featured
boolean search functionality.

How to get started

Before we continue, I presume that MySQL 4.0 has
been installed on your servers. Figure 1 shows the cre-
ation of a new database and the creation of the article
table with some article examples. Save the listing as
database.SQL and the following command will create
the database and tables needed

$ MySQL -uadminuser -padminpassword <

database.SQL

with adminuser and adminpassword being the user-
name and password you use for administrating your
MySQL databases.

Creating The Full-Text Index

Looking at our table article, we would like to be able
to search on author and the story itself. First connect to
the articles database and the alter command will create
the full-text index:

MySQL> alter table article add FULLTEXT

search_idx (author, story);

You can also create a full-text index at the time of
table creation by adding FULLTEXT (author,story) to
the create table command.

Taming Full-Text Search

with MySQL

By Leon Vismer

How manytimes has your boss asked the dreaded question,
‘Can we add a full text search engine to the clients’ news articles?’.

PHP Version: 4.0 and above

O/S: Any

Additional Software: MySQL 4.0 and Above

REQUIREMENTS

FEATURES Taming Full-Text Search with MySQL

January 2003 · PHP Architect · www.phparch.com 31

Testing The Full-Text Index

Trying the SQL command on our single row entry in
the article table returns no results.

MySQL> SELECT * FROM article WHERE MATCH(author,

story) AGAINST('scripting');

You might be thinking, lets flame Leon... nothing is
working! Before you do, you should keep in mind that
MySQL will not return matched records if the word
searched for is present in more than half the rows, thus
a 50% threshold is used. Adding two more SQL inserts
from Figure 2 will return the desired result.

To allow boolean full-text searching we must include
IN BOOLEAN MODE into the AGAINST syntax:

MySQL> SELECT * FROM article WHERE MATCH(author,

story) AGAINST('+language' IN BOOLEAN MODE);

The SQL command returns all three entries from our
article table. What went wrong? Why did all three rows
return--and why wasn't the 50% threshold applied
here? When searching in boolean mode, MySQL does
not use the threshold feature, thus returning three out
of three rows.

The MySQL documentation defines certain boolean
operators one can use while searching. These opera-
tors are listed in Figure 3.

Figure 4 shows some SQLSQL examples of putting it
all together.

Now that we have looked at MySQL as our search
engine, let's focus on the methodology we would like
to use in our PHP code.

Search Methodologies

When incorporating full-text search in our projects, it
would be nice if we could separate the business logic

drop database if exists articles;
create database articles;
use articles;
create table article (

id int auto_increment not null,
author char(64) not null,
story text not null,
PRIMARY KEY (id)

);
insert into article values(0, 'Leon Vismer', 'PHP (recursive acronym for \"PHP: Hypertext
Preprocessor\") is a widely-used Open Source general-purpose scripting language that is especially
suited for Web development and can be embedded into HTML');

Figure 1

insert into article values(0, 'Tikvah Jesse Meyer', 'Notice how this is different from a script written
in another language like Perl or C -- instead of writing a program with lots of commands to output
HTML');
insert into article values(0, 'Hannah Lee Davids', 'What distinguishes the PHP language from something
like client-side JavaScript is that the code is executed on the server.');

Figure 2

Operator Definition

+ A leading plus sign indicates that this word must be present in every row returned.

- A leading minus sign indicates that this word must not be present in any row returned.

<>
These two operators are used to change a word's contribution to the relevance value that is
assigned to a row.

() Parentheses are used to group words into subexpressions.

~
A leading tilde acts as a negation operator, causing the word's contribution to the row relevance
to be negative.

*
An asterisk is the truncation operator. Unlike the other operators, it should be appended to the
word, not prepended.

“
The phrase, that is enclosed in double quotes ", matches only rows that contain this phrase lit-
erally, as it was typed.

Figure 3

FEATURES Taming Full-Text Search with MySQL

from our specific implementation. This will create a true
searching wrapper around full-text searching.

Here's a shopping list of business logic functionality
we need:

- support for boolean operators in our queries
- ability to find the amount of articles that

matched our entire query
- capability of paginating the results with a "next

page" function
- support for caching the results of a query to

allow the next results to free up MySQL pro-
cessing time

To allow the separation of business logic and imple-
mentation, we can create a search class and a compli-
mentary caching class to cache queries.

Getting To The Code

To start off we need to create an HTML form to allow
us to search our articles database. The focus here is not
on cosmetics as much as functionality (developers don't
do design). Listing 1 shows a simple HTML form that
calls our php script to perform the search. Listing 2
should be saved as search.php to allow for the form to
work unchanged. We first include the searching class
into our code . Notice the use of the $_GET system vari-
able as register_globals in the php.ini file is turned off
for security reasons. At this point you might wondering
why I'm using a function to do the searching. The
answer is simple: we use a function to facilitate the
Next results feature.

The search function takes three variables as its argu-
ments--first, the search string as entered from the
query, second, the position in the results array to
return, and third, the number of results to return. After
creating a new instance of our search class, we use the
count member variable in the class to check if any arti-
cles matched our query.

$results = new Search($search_for, $start,
$increment);

if ($results->count > 0) {
// We found some articles

} else
// We did not find any articles

}

The $results->res array contains the list of matched
articles from $start to $start + INCR. Stepping
through the array we are able to echo the articles
found. Using

substr ($result['story'], 0, 128)

we display only the first 128 characters of our article.
After all we do not want to display the whole article yet.
I will leave it to you to add the functionality of clicking
on the author to display the complete article.

The last part of the search function determines if we
need to print a 'Next page...' link to view the rest of the
search results. If $results->count is larger that the
$start + $increment we have not come to the end of
our results and we need to create a $next link to allow
for continued searching. Note that we need to urlen-
code the $search_for text as it may contain special
characters like a '+' that would be interpreted as a space
in a URL instead of a plus sign.

As an enhancement to search.php, we could exclude
the direct printing of results from the result loop and
rather use a template system to separate the data layer
from the presentation layer. We can also allow the
author line to be click-able allowing the full article to be
displayed, parsing the article_id as our reference.

The Search and Caching Class

Before we can start with our searching class we need
to create a MySQL connection that we can use in the
rest of our application. The following variables are used
to connect to our articles database.

define("DATABASE", 'articles');
define("HOST", 'localhost');
define("USERNAME", 'www');

define("PASSWORD", 'www');

We need to create a new MySQL user that we can use
for our web application with far less permissions.
Normally a user with select, insert, update and delete
functionality is all we need, allowing the user to only
access the database from the localhost. One way of
adding such a user is with the grant command.

mysql> grant select, insert, update, delete on

articles.* to www@localhost identified by 'www';

Remember that you have connect to the MySQL serv-
er with the administrative user for the grant command
to work.

The following code will create a link to the server and
connect to our articles database:

$link = MySQL_connect(HOST, USERNAME,PASSWORD);
if (!$link)

die("Could not connect to the MySQL server");
MySQL_select_db (DATABASE, $link);

January 2003 · PHP Architect · www.phparch.com 32

mysql> SELECT * FROM article WHERE MATCH(author, story) AGAINST('+language -executed' IN BOOLEAN MODE);
mysql> SELECT * FROM article WHERE MATCH(author, story) AGAINST('"lots of commands"' IN BOOLEAN MODE);

Figure 4

FEATURES

January 2003 · PHP Architect · www.phparch.com 33

Taming Full-Text Search with MySQL

<html>
<head>
<title>Search form</title>
</head>
<body bgcolor='#FFFFFF'>
<form method='get' action='search.php'>
<input type='hidden' name='function' value='search'>
<input type='hidden' name='start' value='1'>
Search for: <input type='text' name='search_for' size=20>

<input type='submit' value='Search'>
</form>
</body>
</html>

Listing 1

1 <html>
2 <head>
3 <title>Search Results</title>
4 </head>
5 <style>
6 td {
7 font-family: Verdana,Arial;
8 font-size: 11px;
9 color: #100EB3;
10 background-color: #A0BFE5;
11 }
12 </style>
13 <body bgcolor='#FFFFFF'>
14 <table width=450 border=0 cellpadding=2 cellspacing=1>
15 <?php
16
17 // Include the searching class
18 // Make sure that the . path is included in your include_path
19 // variable of your php.ini file.
20 include("./Search.inc");
21
22 // The amount of results to return
23 define("INCR", 30);
24
25 // A search function to fascilitate Next results
26 function search($search_for, $start, $increment) {
27 $results = new Search($search_for, $start, $increment);
28 if ($results->count > 0) {
29 foreach ($results->res as $result) {
30 echo "<tr><td valign=top>". $result['author'] ."</td>\n";
31 echo "<td>". substr($result['story'], 0, 128) ." ...</td></tr>\n";
32 }
33 $new_start = $start + $increment;
34 if ($results->count >= $new_start) {
35 $encode_search = urlencode($search_for);
36 $next = "<a href='search.php?function=search&search_for=$encode_search&sta
rt=$new_start&increment=". INCR ."'>Next results\n";
37 } else {
38 $next = '';
39 }
40 } else {
41 echo "<tr><td>No articles where found</td></tr>";
42 }
43 echo "<tr><td colspan=2>$next</td></tr>\n";
44 }
45
46 if ($_GET['function'] == 'search') {
47 search($_GET['search_for'], $_GET['start'], INCR);
48 }
49
50 ?>
51 </table>
52 </body>
53 </html>

Listing 2

FEATURES Taming Full-Text Search with MySQL

Let The Fun Begin

Our search class will take three parameters, the text
we are searching for, the start of our return results and
the number of results to include in our results array.
Listing 3 shows the code of our searching class. Notice
that we use an uppercase class definition, class Search,
to allow us to easily distinguish at the time of instanti-
ating the class, between normal functions and other
classes.

First, we define some member variables we would use
within the class to keep track of things. The most
important variables are $res and $count. The $res vari-
able will be used as an array containing the article infor-
mation we need to return. The length of this array will
be the value of the $increment variable (30 by default).
The $count variable contains the total amount of arti-
cles that matched our query. After a match has been
found the $res array will be populated by the id, author
and story values of the article. The syntax of the array
will be defined as:

$this->res[$this->count]['id'] = id that matched
$this->res[$this->count]['author'] = the author of
the article
$this->res[$this->count]['story'] = the full arti-
cle itself

Therefore we are creating an associative array using
the counter $count as a place holder of amounts in our
results array.

The constructor of the class sets the member vari-
ables and the following logic is followed:

1. Create a new instance of the cache class
2. If the search results have been cached

2.1. Return the amount of entries found
and a trimmed down SQL statement
2.2. Use the SQL statement containing the
id numbers of articles to build the results
array $res

Else
2.3. We create a full-text searching SQL
statement using the MATCHED and
AGAINST syntax
2.4. We use the SQL statement to build the
results array
2.5. If we found some matched articles
cache the ids of the matched articles

End

The return_sql function will return a valid SQL state-
ment to use for searching our article table. If the
$search_for variable is empty all the articles ordered
by the author will be returned.

In the normal_search function we use the SQL state-
ment returned from return_sql to query our data-

base. Looping through the results array, we use the
res_add function to add the id, author and story to our
results array until we reach $stop. $stop is defined by
$start + $incr - 1. As an example, start at entry 31
and return another 30, therefore stop adding items to
the results array when we hit 60 but keep on counting
the total amount of articles matched using $count.
While counting the amount of articles matched, we
build a $matched array containing the unique id num-
bers of the articles. We will therefore have the unique id
number of every article that matched our search query.

How Does The Caching Work?

Listing 3 also contains the code for the caching class.
We cache the query results by saving the unique id
numbers of an article. A query will be cached if the
search strings are different and if an hour has lapsed
since the last query. A unique cache file is created by
creating a md5 hash function using the $search_for
text and today's date plus the current hour. In our
example the date is created using the date function
using today's date with the current hour as defined by
the call to date('Ymd H'). For example:

$cache_file = md5("language"."20021119 11");

Using this method the query will be cached for a
maximum of 59 min and a minimum of 1 min.

However if you would like for the query to be cached
exactly 20 min, you can use the following code:

$new_time = strtotime("+20 minutes");
$new_date = date("Ymd Hi", $new_time);

$cache_file = md5($search_for.$new_date);

Our cached files are stored in the /tmp directory and
have the .cache extension. If the filename created by
the md5 hash function with the extension .cache, exists
in /tmp it means that we have cached the query and
we should use the unique article ids in the cache file to
build the $res results array. In the return_cache func-
tion we read the contents of the cache file into a vari-
able and create an array from that variable using:

$cached = implode("", (@file($this->cache_file)));

$arr = explode(",", $cached);

To return the unique article ids, we use the
array_splice function to return sub sections of the
results array.

$result = array_splice($arr, $start, $inc);

Using the implode function on our results array we
build the trimmed down SQL needed to return the arti-
cles in question.

January 2003 · PHP Architect · www.phparch.com 34

FEATURES Taming Full-Text Search with MySQL

January 2003 · PHP Architect · www.phparch.com 35

1 <?php
2
3 define("DATABASE", 'articles');
4 define("HOST", 'localhost');
5 define("USERNAME", 'root');
6 define("PASSWORD", 'root');
7 $link = mysql_connect(HOST, USERNAME, PASSWORD);
8 if (!$link)
9 die("Could not connect to the MySQL server");
10 mysql_select_db(DATABASE, $link);
11
12 class Search {
13 var $stop = "";
14 var $start = "";
15 var $incr = "";
16 var $text = "";
17 var $res = array();
18 var $count = 0;
19
20 // Class constructor
21 function Search($search_for, $start, $incr) {
22 $this->start = $start;
23 $this->incr = $incr;
24 $this->stop = $start + $incr - 1;
25 $this->text = $search_for;
26 $cache = new Search_cache($this->text);
27 if ($cache->cached()) {
28 list($amount, $sql) = $cache->return_cache($start, $incr);
29 $this->cache_search($amount, $sql);
30 } else {
31 $sql = $this->return_sql($this->text);
32 $matched_ids = $this->normal_search($sql);
33 if (!empty($matched_ids)) {
34 $cache->store_cache($matched_ids);
35 }
36 }
37 }
38
39 // Return the correct SQL statement
40 function return_sql($text) {
41 $sql = '';
42 if (!empty($text))
43 $sql = " MATCH (author, story) against('$text' IN BOOLEAN MODE) ";
44
45 if (!empty($sql))
46 $query = " where $sql";
47 return "select * from article $query order by author";
48 }
49
50 // Perform a normal search
51 function normal_search($sql) {
52 global $link;
53 $res = mysql_query($sql, $link);
54 while ($row = mysql_fetch_array($res)) {
55 $this->count++;
56 // Only return the amount we need
57 if ($this->count >= $this->start && $this->count <= $this->stop)
58 $this->res_add($row);
59 $matches[] = $row['id'];
60 }
61 if ($this->count < $this->stop)
62 $this->stop = $this->count;
63
64 if (is_array($matches))
65 $match_list = implode(",", $matches);
66 else
67 $match_list = '';
68 return $match_list;
69 }
70
71 // Return the cached search results

Listing 3

Continued On Page 36...

FEATURES Taming Full-Text Search with MySQL

Ultimately, we can even eliminate using the trimmed
down SQL command to return cached entries and
physically store the results in the cache file as an asso-
ciative array with the unique id, author and story val-
ues. Using the PHP eval function we will be able to eval-
uate the information stored in the cache file.

Conclusion

We have looked in some detail at how to include a
searching class using MySQL 4.0 full-text indexing
capabilities into your projects. I hope that you have fun

extending your applications and taking these examples
to the next level.

To test the next results section, change the
define("INCR", 30) line in search.php to define("INCR",
1) and search for the string 'language'. You should get
three records back.

January 2003 · PHP Architect · www.phparch.com 36

72 function cache_search($amount, $sql) {
73 global $link;
74 $res = mysql_query($sql, $link);
75 while ($row = mysql_fetch_array($res)) {
76 $this->res_add($row);
77 $this->count++;
78 }
79 $this->count = $amount;
80 }
81
82 function res_add(&$row) {
83 $this->res[$this->count]["id"] = $row["id"];
84 $this->res[$this->count]["author"] = $row["author"];
85 $this->res[$this->count]["story"] = $row["story"];
86 }
87 }
88
89 // Manages the caching of queries
90 class Search_cache {
91 var $cache_file = "";
92 var $timeout = "Ymd H";
93
94 function Search_cache($text) {
95 $this->cache_file = '/tmp/'.md5($text.date($this->timeout)).'.cache';
96 }
97
98 // Check if a query has been cached
99 function cached() {
100 if (is_file($this->cache_file))
101 return true;
102 else
103 return false;
104 }
105
106 // If the query has been cached return the results
107 function return_cache($start, $inc) {
108 $start--;
109 $cached = implode("", (@file($this->cache_file)));
110 $arr = explode(",", $cached);
111 // Amount of matches found
112 $amount = count($arr);
113 $result = array_splice($arr, $start, $inc);
114 $sql = "select * from article where id IN (". implode(',', $result) .") order
by author";
115 return array($amount, $sql);
116 }
117
118 // Store the cached search ids
119 function store_cache($store) {
120 $fd = fopen($this->cache_file, "w+");
121 fputs($fd, $store, strlen($store));
122 fclose($fd);
123 }
124 }
125
126 ?>

Listing 3: Continued From Page 35...

Leon is a developer based in Cresta, South Africa, who specializes in
web application development.

php|a

E
X
C

L
U

S
IV

E

January 2003 · PHP Architect · www.phparch.com 37

EXCLUSIVE

Ithink it’s fair to say that, in the world of PHP, few peo-
ple can say that they have never heard of Zend

Technologies. After all, their co-founders wrote the
Zend Engine, on which PHP itself has now been based
for several years. Zend publishes several well known
tools for PHP development, like the Zend Studio IDE or
the Zend Performance Suite (which we reviewed in the
December 2002 issue of php|a), and Zend.com is one
of the best-known destinations for PHP-related informa-
tion.

When we heard that Zend was working on a special
offer for small businesses, therefore, our journalistic spi-
der sense started twitching, and we sprang into action.
What we discovered is an ambitious plan that will put
the power of Zend’s advanced tools in the hands of
small businesses and allow them to take full advantage
of PHP as they grow.

Products From the PHP Masters

The products that Zend offers are well known
throughout the PHP community for reliability and
effectiveness. The Zend Studio is a multi-platform IDE
for Windows, Linux and MacOS that provides features
like syntax highlighting, project management, a built-
in debugger and integration with a server component
for code optimization. Version 2.6, which is due out

soon, will also include integration with the popular CVS
(Concurrent Versioning System) version-control soft-
ware. The Zend Encoder is a software tool that makes it
possible to encrypt PHP scripts so that they are no
longer readable by human but can still be executed by
the PHP interpreter. Finally, the Zend Performance Suite
provides a set of three different acceleration systems
that increase the performance of PHP-based websites.

The Zend of Computer

Programming:

Small Business Heaven

By Marco Tabini

This month, PHP powerhouse Zend Technologies launches a new program aimed at making its products more accessi-
ble to small businesses. We discuss its features, as well as the role of Zend in the PHP community, with President and

CEO Doron Gerstel.

Zend : Small Business Heaven

January 2003 · PHP Architect · www.phparch.com 38

EXCLUSIVE

However, Zend’s applications are not known for
being inexpensive—the Enterprise Edition of the Zend
Performance Suite alone starts from $1,875 (US), while
the Encoder and Studio products can cost as much as
$2,880 and $249 respectively. While these prices are
probably easy to justify for a medium- to large-size
organization, small businesses—the backbone of PHP
adoption and usage—have traditionally been unlikely
to adopt Zend’s products en masse.

Small Business Heaven

All this is about to change,
however. This month, Zend will
announce a new program aimed
at small businesses—defined as
those companies whose annual
revenues are below $250,000
(US)—that will make it signifi-
cantly easier for them to acquire
a great set of tools that are

bound to increase their productivity in PHP-related
activities, and we at php|a have the scoop.

The idea behind this initiative is very simple—busi-
nesses that qualify for the program will be eligible to
receive a license for the Zend Studio, Encoder and
Performance Suite for a one-time payment of $295
(US). The license for the Studio IDE is perpetual, while
the Encoder and the Performance Suite are licensed for
as long as a company remains within the program’s cri-
teria.

The potential implications of this initiative, however,
are far-reaching. By allowing small businesses access to
its products at such a low price, Zend is lowering the
cost of providing high-quality PHP-based services for
the entire community, thus ultimately improving the
PHP market as a whole. Zend can clearly use this as a
long-term strategy to promote the use of its products,
not unlike what many other software companies have
done for years. After all, businesses who participate in
the program now are likely to remain faithful Zend
users later on when they outgrow it.

However, this move makes a complete PHP-based
solution—one that includes the protection of intellectu-

al property, software optimization and caching, as well
as a full-fledged development environment—one of the
least expensive website development platforms avail-
able, which, in turn, provides small businesses with an
opportunity to be highly competitive in the current
economy.

Q&A With High Up Above

With such news afoot in the wind, we could not resist
but exchange a few words with the head honcho at
Zend. No, we’re not talking about Zeev Suraski,
although he is probably the most widely recognized
member of the Zend team and its co-founder.

The focus of our interview is Doron Gerstel, who
cofounded Zend and is its President and CEO. At 42
years of age, Mr. Gerstel has been around the block a
few times, holding positions at ESC Medical Systems
and Fibronics Ltd., and sitting on the board of directors
of companies like Fritz Inc., America’s third-large logis-
tics provider, which was acquired by UPS in February of
2001.

We asked Doron questions on Zend, PHP and the
small business program that Zend has just launched:

php|architect: What is Zend’s mission?

Doron Gerstel: The answer to this question is very
simple. From Zend’s first days, our mission has been to
give solid backing to the PHP market, through direct
open-source activities as well as through our full spec-
trum of development, protection and scaling products.

php|a: Which role would you like Zend to assume
within the PHP community?

Doron Gerstel - President and CEO of Zend�PHP is in our blood-

stream here at Zend, and

we do whatever is neces-

sary for the sake of this

baby.�

Zend : Small Business Heaven

January 2003 · PHP Architect · www.phparch.com 39

EXCLUSIVE

DG: Our role in the PHP world consists of a number
of responsibilities. First of all, Zend continues to work at

development of the Zend Engine and the PHP project,
as well as general PHP evangelism and education. The
PHP community has come to expect this, we enjoy this
work, and it is necessary for PHP’s continued growth.

Second, Zend’s R&D efforts will continue to bring
innovative products. We are often considered the ‘bell-
weather’ or measuring stick by which professional
products are measured, and I intend for this continue
with our current products as well as new products that
we’ll be coming out with in 2003.

php|a: How many of its resources does Zend dedi-
cate to the PHP development effort?

DG: We have three core engine developers that are
very actively involved, as well as supplemental develop-
ment and QA teams that pitch in during peak develop-

ment times.
It’s worth noting also that our

commitment to the PHP com-
munity doesn’t end with just
Zend Engine / PHP develop-
ment. Our Zend.com Developer
Zone also takes significant edito-
rial resources, which we do for
the sake of promoting PHP
usage.

php|a: How do you determine this number?

DG: PHP is in our blood-stream here at Zend, and we
do whatever is necessary for the sake of this baby. So,
the core PHP development team activity is untouch-
able.

Beyond this, we grow our investment almost exactly
in proportion with our revenue growth. As more cus-
tomers choose Zend, Zend invests more into the com-

Zend is lowering the cost of

providing high-quality

PHP-based services for the

entire community.

FEATURES

January 2003 · PHP Architect · www.phparch.com 40

munity. This is something I’m very proud of, especially
when I look at some of the other commercial vendors
who sell PHP products.

php|a: Do you think that PHP needs a more struc-
tured development approach and more business focus,
like Java? Have you ever considered taking a more
active approach to this end?

DG: I’ll split that question into two - Structured
Development and Business Focus.

Regarding structured development, only a bit. If you
look at the adoption rate, the product head-to-head
comparison, and the rate of product feature advance-
ment, you’ll see that PHP really shines. The whole PHP
Development Team should be very proud of this fact.
That said, a bit more structure might help. For exam-
ple, PHP 5 could have been available by now if we had
more structure in the development process.

About the business focus, here there is no question.
PHP does not have a strong evangelism body, and the
result is felt by all of us. Despite the adoption, we all still
fight for even a fraction of the awareness that JSP and
ASP get. Can you even imagine what the adoption rate
of PHP would be today if PHP had the marketing force
behind it that Java has?

Zend will definitely be growing its efforts for PHP
evangelism, but this won’t be a solo effort.

php|a: Which organizations do you think benefit the
most from the use of PHP?

DG: The type of organization that benefits from PHP
is, frankly, the type that focuses on results as opposed
to hype. In terms of size, large organizations benefit
from PHP’s scalability, both in terms of price as well as
power. Smaller organizations benefit from ease of
deployment and low start up cost. This, by the way,
was the impetus to introduce our Small Business
Program.

php|a: Tell us about the new
small-business initiative. What
do you hope to accomplish by
introducing it?

DG: Our Small Business
Program provides a full collec-
tion of Zend products, at a price
that is very amenable to start-
ups or small companies that
typically have to worry about

FEATURES

cash-flow issues.
Zend itself grew from being a living-room based

start-up. I see the number of PHP-powered small com-
panies, so many of which have unique talents and inno-
vative business concepts, and I want to give the assis-
tance that I am capable of providing.

From a commercial benefit point of view, it’s a long-
term strategy. By adding one more pillar of support to
the emerging PHP market, we hope that Zend’s market
will thus grow in the future. The short-term benefit is
negligible.

php|a: Are you afraid that you will dilute the per-
ceived value of your products by offering them at a
reduced price?

DG: No, I don’t think so. Our products provide
tremendous value. Our customers tell us this over and
over.

The fact that Zend is helping many more small busi-
nesses get through their early growth stages does not
diminish the value that the products offer. Look at Zend
Encoder, for example. Even the smallest PHP organiza-
tions recognize that intellectual property protection is
mission-critical, and that it has tremendous value in
terms of the revenue that it can generate for them in
the future. Not to mention the productivity gained via
Zend Studio, which is integrated with Zend Encoder.
The problem is that, still being small, they need to test
the market and prove that the revenue will come.

Interestingly enough, Zend has always offered a sig-
nificant educational discount, for universities, schools,
or any educational/research organization. This did not
take away from perceived value. In this sense, I believe
that the Small Business Program too will reinforce the
value, not dilute it.

php|a: Will the level of customer support you will
offer to businesses who will participate in this initiative
be the same as what you offer to your regular cus-
tomers?

DG: Absolutely.

php|a: Do you plan to provide any type of marketing
support to Zend’s small-business customers?

DG: Yes, we do. Zend is most known for its products,
and thus the products are the star attractions of the
Small Business Program. But smaller companies also
need help in getting more marketing exposure and
business development, and with the tremendous traffic
at Zend.com, we have the ability to provide this, to
everyone’s benefit.

January 2003 · PHP Architect · www.phparch.com 41

php|a

The Zend Small Business Program

All the Details

The SBP is for all business whose annual
revenues are below $250,000 (US).
Companies that meet the requirements
receive the following:

Zend Studio 2.0 � Zend�s PHP editor
includes a host of features designed to
make the creation of PHP-based applica-
tions easier.

Zend Performance Suite � This server-
side tool integrates directly with Apache 1.3
to provide additional scalability for your
application. It includes:

- A code compilation tool, designed to
reduce the time that the PHP engine takes
to parse your script

- A GZIP compression system that makes
your pages load faster by sending them in
compressed format to the user�s browser

- A content-caching mechanism that acceler-
ates your site�s performance by creating
static versions of its pages

Zend Encoder � A system that allows you
encrypt your scripts so that they cannot be
viewed by any parties you redistribute them
to. It can be useful for protecting your intel-
lectual property and ensuring that those
techniques and algorithms your team
worked so hard on cannot be just copied
and reused by someone else.

All the programs that are part of the SBP
are licensed for as long as the customer
meets the requirements of the program, with
the exception of the Zend Studio product,
which comes with a perpetual license. A
support plan that includes upgrades to the
key components is also available.

F
E
A

T
U

R
E
S

FEATURES

January 2003 · PHP Architect · www.phparch.com 42

The .NET Framework is a new computing platform
that aims to simplify application development in the

highly distributed environment of the Internet. It is
designed to provide a consistent object-oriented pro-
gramming environment, as well as a code execution
environment. With these features, .NET aims to mini-
mize software deployment and versioning conflicts,
guarantee safe execution of code, and build all com-
munication on industry standards to ensure that code
based on the .NET Framework can integrate with any
other code.

Here are few advatages of the.NET framework:

Improved Reliability
Increased Performance
Developer Productivity
Powerful, Granular Security
Integration with Existing Systems
Ease of Deployment
Mobility Support
Native XML Web Service Support
Support for over 20 Programming Languages
Flexible Data Access

.NET Assemblies and COM

An assembly is the primary building block of a .NET

Framework application. It is a collection of functionali-
ty that is built, versioned and deployed as a single
implementation unit containing one or more files. Each
assembly contains an assembly manifest, a collection of
metadata that describes the relationships between each
of the elements that are part of the assembly itself.

COM (Component Object Model), arguable the
most popular component software models available on
Microsoft platforms, defines how objects expose them-
selves for use with other objects and how processes
communicate across the network. Because COM
objects are reusable binary components, they are easi-
ly integrated with Visual Basic, PHP, Java or any other
language that supports this standard. COM provides
users with a wide range of services, easy to use tools
and hundreds of applications and components.

What is COM Interop?

You have to understand from the outset that .NET
and COM are basically two different technologies,

Using The .NET

Assembly through COM

in PHP

By Jayesh Jain

Microsoft is pushing .NET as the next wave of web development for the Windows platform (and, indeed, for the
Internet in general through its Shared Code “Rotor” initiative). While PHP cannot yet work natively within the .NET

framework, Windows users have the alternative to interact with it through COM.

PHP Version: 4.0 and above

O/S: Windows

Additional Software: .NET Framework

REQUIREMENTS

FEATURES

January 2003 · PHP Architect · www.phparch.com 43

Using The .NET Assembly through COM in PHP

which, unfortunately, are not compatible with each
other.

However, Microsoft realized that, given the invest-
ment people have made over the years in COM tech-
nology, providing some way of utilizing existing COM
applications within the .NET Framework was neces-
sary—this is how the concept of “COM
Interoperability”, or COM interop, came to be.

COM interop allows you to create a COM wrapper
around .NET components, which makes Windows look
at them as COM objects, thus making them available to
any calling COM applications like any standard COM
based component.

COM and PHP

PHP has built-in functions for using COM objects.
Using the COM Interop feature of .NET, we’ll create a
wrapper around a .NET assembly and use it in PHP (in
fact you could use the same steps to use a .NET assem-
bly with VB6 or any other COM-compatible applica-
tion).

Before you go any further, I want to note that COM
functionality is available only to the Windows version of

PHP. This may sound quite obvious, since COM is a
Windows-only technology, but Microsoft has
announced that it intends to make .NET a multi-plat-
form technology and this could lead to some confu-
sion.

As long as you’re running PHP in a Windows environ-
ment, therefore, you do not have to install any addi-
tional software over PHP to use COM, though you’ll
want to be aware of a few settings in the php.ini
(shown in Figure 1) which can affect COM functionali-
ty in PHP.

This article assumes that you have a fair knowledge of
the .NET Framework, PHP and COM, and that you have
Visual Studio .NET, PHP and IIS or Apache installed and
working properly on your computer.

Creating a .NET Assembly

Lets start our tutorial by creating a very simple .NET
assembly. To create the assembly we will use Visual
Studio and the Visual Basic language. Keep in mind,
though, that you could in fact use C# or any other lan-
guages supported by the .NET architecture.

To keep the example short and sweet, let’s create a
very simple class called patient, with two properties:
LMP (Last Menstrual Period) and EDD (Estimated
Delivery Date). We want the ability to set and read lmp,
and the other property, edd, will be calculated from the
lmp property.

We will use the formula ‘edd = lmp + 280 days’ (this
is a standard calculation for human gestation period),
to derive a value for our edd property.

Setting Name and Description Default Value

com.allow_dcom
Set to one if DCOM functionality is to be allowed. This setting can be used to limit
the use of components that are not on the local machine

0

com.autoregister_typelib
Set to 1 if you want PHP to automatically register the type libraries specified in the
com.typelib_file INI entry

0

com.autoregister_verbose
Set to 1 if you want PHP to print out additional information while registering typelibs

0

com.autoregister_casesensitive
Set to 1 if you want type libraries to be registered in a case sensitive way

1

com.typelib_file
Defines a file that contains an arbitrary number of type libraries that PHP can preload
into its namespace so that it will recognize constants and type definitions

“”

Figure 1 - php.ini settings

COM functionality is avail-

able only to the Windows ver-

sion of PHP

FEATURES

January 2003 · PHP Architect · www.phparch.com 44

Using The .NET Assembly through COM in PHP

Let’s see all of these things in action now. Open Visual
Studio.Net and create a new class library project, called
“phpclass”. Click OK to create this project, and Visual
Studio creates all the file(s) necessary to create this
project (Figure 2).

Visual Studio creates a class (class1) for you to start
with. Open the code window for class1 (class1.vb), if it
is not open already, by double clicking the class1.vb file
in the Solution Explorer. Type the code in Listing 1 into
the code window for class1 (make sure you delete all
the default code genereated by Visual Studio, since we

are replacing it in its entirety).
This VB.NET code calculates the EDD (Estimated

Delivery Date) from the specified LMP (Last Menstrual
Period) date for any patient. To implement this, we
have created a namespace called HealthRecord and a
public class patient with two public properties, lmp and
edd. The edd property is a readonly property, which is
calculated from lmp which is a read-write property.

We have used the format function to format the date
variable to human readable format. We’ve also used the
dateadd function to calculate the edd, which is 280

Figure 2 - Creating a new class in Visual Studio .NET

Namespace HealthRecord
 Public Class patient
 Private m_lmp As Date
 Public Property lmp()
 Get
 Return Format(m_lmp, "D")
 End Get
 Set(ByVal Value)
 m_lmp = Value
 End Set
 End Property
 Public ReadOnly Property edd()
 Get
 'EDD is 280 days from LMP
 Return Format(DateAdd(DateInterval.Day, 280, m_lmp), "D")
 End Get
 End Property
 End Class
End Namespace

Listing 1 - Code for Class1.vb

FEATURES

January 2003 · PHP Architect · www.phparch.com 45

Using The .NET Assembly through COM in PHP

days from the lmp.

Creating a Strong Name Key file

A ‘Strong Name’ is the full class name with name-
space, version, public key and digital signature. All of
the assemblies installed on the system must be unique-

ly identified and versioned. To make sure the assembly
is not tampered with, it also needs to be signed with a
common key (public key) for decryption.

The Strong Name command-line tool (sn.exe) can be
used to generate a new public-private key pair and to
write that pair to a file which could then be used to cre-
ate the assembly.

Option Description

-D assembly1 assembly2
Verifies that two assemblies differ only by signature. This is often used as a check
after an assembly has been re-signed with a different key pair.

-e assembly outfile Extracts the public key from assembly and stores it in outfile.

-h Displays command syntax and options for the tool.

-i infile container
Installs the key pair from infile in the specified key container. The key container
resides in the strong name CSP.

-k outfile Generates a new key pair and writes it to the specified file.

-m [y|n]

Specifies whether key containers are computer specific, or user specific. If you
specify y, key containers are computer specific. If you specify n, key containers
are user specific. If neither y nor n is specified, this option displays the current
setting.

-o infile [outfile]

Extracts the public key from the infile and stores it in a .csv file. A comma sepa-
rates each byte of the public key. This format is useful for hard coding references
to keys as initialized arrays in source code. If you do not specify an outfile, this
option places the output on the Clipboard.

-q[uiet] Specifies quiet mode; suppresses the display of success messages.

-? Displays command syntax and options for the tool.

Figure 3 - Some options for the sn.exe tool

Figure 4 - Output of the strong name generation utility

FEATURES

January 2003 · PHP Architect · www.phparch.com 46

Using The .NET Assembly through COM in PHP

Figure 3 shows some of the options available to the
sn.exe tool.

To generate the Strong Name Key File we run the fol-
lowing command:

This utility can be found in the .NET Framework’s Bin
folder C:\Program Files\Microsoft Visual Studio

.NET\FrameworkSDK\Bin (this might be different on your
computer). Alternatively, you could run a .NET
Command Window by selecting Start –> Programs ->
Microsoft Visual Studio .NET -> Visual Studio .NET Tools
>- Visual Studio .NET Command Prompt, which sets all
of the required paths for you.

Figure 4 shows the output of the strong name gener-

ation utility that you should be seeing.

Adding the Strong Key to Project

We need to add the key we just created to our proj-
ect, so open Solution Explorer and double click
AssemblyInfo.vb to open the code window and add the
following:

Please make sure you enter the full path where you
have saved the key file.

Now Build the Application to create phpclass.dll (this
file will be created in your project’s bin folder)
c:\tgol\phpclass\bin\phpclass.dll (this can be differ-
ent on your computer).

Option Description

/help Displays command syntax and options for the tool.

/nologo Suppresses the Microsoft startup banner display.

/regfile [:regFile]

Generates the specified .reg file for the assembly, which contains the needed
registry entries. Specifying this option does not change the registry. You cannot
use this option with the /u or /tlb options.

/silent or /s Suppresses the display of success messages.

/tlb [:typeLibFile]
Generates a type library from the specified assembly containing definitions of the
accessible types defined within the assembly.

/unregister or /u
Unregisters the creatable classes found in assemblyFile. Omitting this option
causes Regasm.exe to register the creatable classes in the assembly.

Figure 5 - Some options for Assembly Registration Tool

Figure 6 - Assembly registration output

sn –k mykey.snk

sn [-quiet][option [parameter(s)]]
<Assembly:

AssemblyKeyFile(“c:\tgol\phpclass\mykey.snk”)>

FEATURES

January 2003 · PHP Architect · www.phparch.com 47

Using The .NET Assembly through COM in PHP

Registering the Assembly

To register a .NET class with COM, you must run a
command-line tool called the Assembly Registration
Tool (regasm.exe). The Assembly Registration tool
reads the metadata within an assembly and adds the
necessary entries to the registry, which allows COM
clients to create .NET Framework classes transparently.
Once a class is registered, any COM client can use it as
though the class were a COM class. The class is regis-
tered only once, when the assembly is installed.
Instances of classes within the assembly cannot be cre-
ated from COM until they are actually registered.

The syntax for the Assembly Registration Tool is as
follows:

Some of its options are shown in Figure 5.
The regasm utility can be found in

C:\WINNT\Microsoft.NET\Framework\v1.0.3705

(although this might be different on your computer,

depending on where you have installed the .NET
Framework).

To register our assembly we’ll run the following com-
mand, whose output is shown in Figure 5.

Adding an Assembly to the

Global Assembly Cache

Each computer where the common language run-
time is installed has a machine-wide code cache called
the global assembly cache. The global assembly cache
stores assemblies specifically designated to be shared
by several applications on that particular computer.

The Global Assembly Cache tool (gacutil.exe) allows
you to view and manipulate the contents of the global
assembly cache, as well as the download cache. You
can invoke gacutil using the following syntax:

Option Description

/cdl Deletes the contents of the download cache.

/h[elp] Displays command syntax and options for the tool.

/i assemply Installs an assembly into the global assembly cache.

/l Lists the contents of the global assembly cache.

/ldl Lists the contents of the downloaded files cache.

/nologo Suppresses the Microsoft startup banner display.

/silent Suppresses the display of all output.

/u[ngen] assembly

Uninstalls a specified assembly from the global assembly cache. If you specify
/ungen, Gacutil.exe also removes the assembly from the native image cache.
This cache stores the native images for assemblies that have been created using
the Native Image Generator (Ngen.exe).

/? Displays command syntax and options for the tool.

Figure 7 - Some options for the Global Assembly Cache tool (gacutil.exe)

1 <?php
2
3 // Create COM object for Microsoft Word
4 $myword = new COM("word.application") or die("Cannnot Open Microsoft Word");
5 // Display Microsoft Word Version
6 echo "We have loaded Version $myword->Version of Microsoft Word
";
7 // Open Microsoft Word
8 $myword->Visible = 1;
9
10 ?>

Listing 2 - Instantiates a copy of Microsoft Word and shows it on your local desktop

regasm assemblyfile [options]

regasm c:\tgol\phpclass\bin\phpclass.dll
/tlb:phpclass.tlb

gacutil [options] [assembly]

FEATURES

January 2003 · PHP Architect · www.phparch.com 48

Using The .NET Assembly through COM in PHP

Its options are shown in Figure 7.
To add our assembly to the GAC we shall run the fol-

lowing command:

This utility can be found in C:\Program
Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin

(again, this might be different on your computer). The
results of this operation call should be similar to what
shown in Figure 7.

To view all of the assemblies installed in the GAC on
your computer, open your Windows Explorer and look
in the assembly folder under your windows folder
C:\WINNT\assembly (on my computer).

There is another way to add an assembly to the GAC:
by using Microsoft Windows Installer 2.0. This is the
recommended and most common way as Windows
Installer provides reference counting of assemblies in
the global assembly cache, as well as other benefits.

How to use COM in PHP

A COM class provides a framework to integrate COM
or DCOM components into your php scripts.

To use the COM functionality we have to instantiate
an object of type “COM” by using the following syntax:

Let’s go over the parameters we can use:

a) module_name This is the name/classid of the
component to be used (Please do keep in mind

that to use any COM object, it has to be
regitered and should have a valid entry in the
Windows registry).

b) server_name This is the name of the
Distributed COM server from which the
component should be used. This is an option
parameter and if not specified localhost is
assumed. (if you want to use DCOM, you must
ensure that the DCOM com.allow_dcom setting
has has been set to true in php.ini.)

Once instantiated, the object assumes all the proper-
ties and methods of the corresponding COM class, so
that it can be used as if we had just instantiated the
COM class itself. Pretty neat, eh?

Now that I have introduced the COM framework pro-
vided by PHP, let’s see some COM implementation in
action. Thanks to the fact that there are hundreds of
COM applications available, we can test the COM func-
tionality of PHP with ease.

In fact, I’d be willing to bet that at least one COM
application is installed on your machine (assuming, of
course, that you run Windows!). Microsoft Word,
Microsoft Powerpoint, Microsoft Outlook, Microsoft
Excel are some example of COM-compatible applica-
tions.

A simple PHP-COM script could be similar to what is
shown in Listing 2. You can execute it directly from the
command line (using the CLI version of PHP) or from
within your web browser, although it doesn’t make
much sense to do so in this case, since the listing
instantiates a copy of Microsoft Word and shows it on
your local desktop.

Figure 8 - Output for phpnet.php

<?php
2
3 $MyObj = new COM (�phpclass.HealthRecord.patient�);
4 $MyObj->lmp = �05/08/2002�;
5 echo �LMP : $MyObj->lmp�;
6 echo �
EDD : $MyObj->edd�;
7
8 ?>

Listing 3 - phpnet.php

COM (string module_name [, string server_name])

gacutil /i c:\tgol\phpclass\bin\phpclass.dll

FEATURES

January 2003 · PHP Architect · www.phparch.com 49

Using The .NET Assembly through COM in PHP

Coding the PHP File

to use our .NET Assembly

Now that we know how to use COM functionality in
PHP, we will write a PHP script to use the COM wrap-
per we just created over the .NET assembly.

Create a text file with the following content and save
the file as phpnet.php in your webserver’s root folder.

As you can see, our first step consists of creating a
COM object for the class we just installed and regis-
tered. Since COM interop makes the .NET assembly
look like a COM object, we can use the same syntax we
used to create COM objects in PHP. Please note that the
class name depends on the project name, namespace
and the class name used to create the .NET assembly.

Next, we set the lmp property to a valid date, which
will be used to calculate edd. Finally, we can output the
LMP property in human readable date format and also
output the calculated EDD property to the browser.

If you open your favorite browser and type
http://localhost/phpnet.php to see the PHP file in
action, the output should look similar to Figure 8.

Cleaning Up

I doubt that you will want to keep the .NET class
we’ve created on your hard drive, so let’s take a look at
what the procedure for removing it is. Because of all the
references created by the installation process, you can’t
simply delete the object files from your hard drive.

The first step consists of unregistering the class’ type
library by calling regasm with the /unregister switch
and the assembly path:

Next, you will need to remove the assembly from the
GAC by running gacutil with /u switch and the assem-
bly name.

In both cases, it’s important not to specify the path to
the assembly and to omit the .dll extension, since
regasm and gacutil will be able to find those out by
themselves based on the information stored in the reg-
istry.

The .NET Framework SDK also provides a Windows
shell extension called the Assembly Cache Viewer
(which is part of Shfusion.dll), which you can use to
remove assemblies from the global assembly cache.

Conclusion

As you have seen, making PHP speak to .NET through
COM is easy and convenient. Even though the example
I provide here is trivial, it demonstrates that COM
Interop is a viable tool for enhancing any application by
taking advantage of literally thousands of COM objects
available on the market. Naturally, using COM will limit
your PHP code to properly functioning only under
Windows—but if that is a limitation you’re willing to
live with, then it’s worth looking into what it has to
offer.

Publish your data fast with PHPLens

PHPLens is the fastest rapid application tool you can find for

publishing your databases and creating sophisticated web

applications. Here’s what a satisfied customer, Ajit Dixit of Shreya

Life Sciences Private Ltd has to say:

I have written more than 650 programs and have almost covered 70% of MIS,

Collaboration, Project Management, Workflow based system just in two

months. This was only possible due to PHPLens. You can develop high

quality programs at the speed of thinking with PHPLens

Visit phplens.com for more details. Free download.

Connect with your database

Jayesh Jain is an Internet consultant based in New Zealand. We asked
him to expand on his previously published .NET COM Interop work, and
he very kindly obliged by writing this article. You can reach him at
jayesh74@yahoo.com

php|a

regasm /unregister c:/tgol/phpclass/bin/php-
class.dll

gacutil /u phpclass

F
E
A

T
U

R
E
S

FEATURES

January 2003 · PHP Architect · www.phparch.com 50

People who are on the security bandwagon would
laugh at that and reply with something like “but of

course you should make it secure, there are hundreds
of teenage hackers around with nothing better to do
than try to hack websites.” In spite of this it is a good
question. Why bother spending 20 hours making your
site secure if you can recover from a compromise in 1
hour? Why bother focusing on the security of a tiny
project that will only ever be used on your computer?

I can’t tell you that you must make all your projects
secure—that is for you to decide. I will, however, tell
you why I focus on the security aspect of everything I
do on the web, even for something as simple as a per-
sonal diary. By focusing on the security of small projects

I find I get into the habit of programming securely. At
first, I thought it was a real pain, but now I do it auto-
matically. The more you try to write secure code, the
more you start writing it without thinking.

Security guides often concentrate almost entirely on
theory and focus very little on how things should actu-
ally be done. Unfortunately, security isn’t something
you can learn by theory alone, so while I will discuss
theory from time to time, for now let’s write some
code and then explain how it can be broken.

A Bug or a Feature?

One of the features of PHP that made it convenient
for writing web scripts is that in older versions if you
had a form with a textbox called ‘foo’ and the user
typed ‘bar’ into it the variable $foo in your script would
automagically be set to ‘bar’. This feature is known as
register globals, and it has caused countless headaches
for programmers trying to write secure scripts.

Writing Secure

PHP Code

By Theo Spears

When people ask me to look at their sites, the most common problem I come across is a complete lack of security.
Sometimes this is because they have not thought about making the site secure, and other times because they have

tried to do so but weren’t aware of all the possible ways a hacker can compromise a site. Either way I often get asked
by people why they should care about security - after all, who would want to hack their site?

Security guides often con-

centrate almost entirely on

theory and focus very little

on how things should actu-

ally be done PHP Version: 4.0 and above

O/S: Any

Additional Software: N/A

REQUIREMENTS

FEATURES

January 2003 · PHP Architect · www.phparch.com 51

Writing Secure PHP Code

A Typical Mistake

Remember the diary I mentioned earlier? I’m going
to show you part of the code from it now as an exam-
ple of some fairly typical code. Unfortunately, the code
is not secure. When I wrote the diary about a year ago
it was only for me so I didn’t bother with a database or
anything complicated like that. I just hardcoded the
values right into the file. My login code looked some-
thing like this:

(Before you ask, xxxxxxxx wasn’t really my pass-
word). So, what is wrong with that code? To the
untrained eye, it looks safe enough—if the user enters
a bad username or password, it will ask them to login
again. However, it’s far from safe, and to better under-
stand its limitations, we need to look at what happens
when someone tries to login.

To simplify logging into my diary I had a bookmark
that automatically entered my username and password
for me. It looked like this:

http://localhost/diary.PHP?username=Grendels&pass-
word=xxxxxxxx.

When I visited that link $username was set to
‘Grendels’ (from the ‘username=’ part) and $pass-
word was set to ‘xxxxxxxx’ (from the ‘password=’
part).

If you still don’t see a problem, imagine if I now vis-
ited http://localhost/diary.PHP?logged_in=true.
There is no username or password so the login part of
the code works fine and shows a form asking you to
login. But wait, what happens in the next bit of code?
In spite of not being logged in, $logged_in is actual-
ly set to ‘true’. This is because it has been set from the
url in the same way the username and password were
set in the earlier example. Suddenly all my inner secrets
have been revealed to the world!

The Evils of Register Globals

When register globals is switched on, any values the
user sends are automatically converted into a variable.
The three primary sources of these variables are forms

the user fills in, variables added onto the end of the url
(like in the example above) and cookies that your
scripts have set. It was very convenient to use globals in
earlier PHP versions, where the alternative was to use
$HTTP_GET_VARS, $HTTP_POST_VARS and
$HTTP_COOKIE_VARS. I have to confess I never both-
ered to use these much longer variable names.

As you can see in my examples above, the (now dep-
recated) ‘register_globals’ feature of PHP can make
securing even very simple web programs difficult, and
the results can be far more severe than just allowing
other people to read your diary. Unfortunately, in spite
of the known security issues, many web servers still
have it switched on and many scripts still rely on it.

To address this problem, since PHP 4.1 there are now
much abbreviated variables to replace the long ones
above. They are called superglobals and include
$_GET, $_POST and $_COOKIE. They are shorter to
type and you can access them easily from functions. If
you are currently using variables like $username for
parameters passed from the browser you should visit
www.PHP.net and look up more about the superglob-
als. The techniques we will review below will keep code
that relies on ‘register_globals’ from endangering your
site - in other words, crackers will no longer be able to
set $logged_in=true.

Method 1 : Turn Off Register

Globals

By far the simplest and possibly the safest way to
avoid problems caused by register_globals is sim-
ply to turn it off. If you look in your PHP.ini file you will
see a line that starts register_globals = . Change this
to register_globals = off and you can be fairly certain
you are safe.

This may be the most simple and obvious method,
but I don’t like it. It is fine on your own server, but if you
ever put your scripts on another server, you may not be
given a choice. The majority of PHP Internet hosts, for
example, have register globals turned on, so turning
this option off is only an option if you own the server
your website will be running from.

Method 2 : Unregister the Globals

As we cannot reliably stop global variables from
being set, the most direct option is to unset them
again. The code to unset all global variables is just a
simple loop, as shown below.

if ($username == �Grendels�
&& $password == �xxxxxxxx�) {

 $logged_in = true;
} else {
 show_login_form ();

}

...
if ($logged_in == true) {
 show_diary_entries ();
}

foreach ($GLOBALS as $key => $value) {
 if ($key != �GLOBALS� && $key != �key�

&& $key != �value�) {
 unset ($GLOBALS [$key]);
 }
}

unset ($key, $value);

FEATURES

January 2003 · PHP Architect · www.phparch.com 52

Writing Secure PHP Code

The $GLOBALS array contains one key/value pair for
each global variable (including itself). Unsetting the key
in $GLOBALS also unsets the equivalent global vari-
able. The ‘if’ block is to keep the $GLOBALS array from
unsetting itself, which could have a nasty effect on
other parts of your script. It also prevents an infinite
loop by excluding $key and $value until afterwards.

If you test this with your script you will find you can
no longer receive any input from the user. This is
because the script resets all global variables, including
$_GET, $_POST, etc. This is clearly not what we want -
a script that can’t receive input from the user is pretty
useless. The solution is to first save a copy of each of the
superglobals inside a function and then write these
copies back after the loop has run. I have provided a
handy function that does all this, which is shown here:

If you want to use any global variables apart from the
superglobals (such as $HTTP_POST_VARS for example)
you can modify the script accordingly. Keep in mind,
however, that most of the ones I have not included are
deprecated. The only interesting part of the added lines
is the if() surrounding $_SESSION. This is because if
no session variables are set $_SESSION is undefined.
Using undefined variables isn’t really a problem in PHP,
but some servers (mine for example) are set up to be
picky and will produce ugly warning messages.

I prefer this method to just turning off
register_globals, and it can be a good patch for
scripts which are written assuming register_glob-
als are off, though it adds more code to be compiled
and run for each of your scripts and it is easy to forget

to use it. If you forget to unregister the global variables,
you unfortunately don’t get errors or anything notice-
able, you just get a page that can be hacked.

Method 3 : Functions

This is by far my favourite way of avoiding the reg-
ister_globals issue, and I use it for most of the
pages I write now. I simply enclose all my code inside a
function and then call that function. Even if the global
variables exist outside the function, inside you can act
as if they don’t exist. Here is an example of my diary
script using this method.

As you can see a few extra lines of code (3 to be
exact) protect my code from register globals no mat-
ter how the server is set up. I keep the code indented
to make it clear that it is in a function. If I come across
code that is not indented in any of my files I am very
suspicious. This takes a little time to get used to but if
you use it regularly it becomes second nature.

Method 4 : Initialize Your Variables

For people who don’t like having all their code
indented and for everyone who wants to know what is
in theory the “proper” way to protect yourself I have
included this method, although I have found it less reli-
able than method 3 above. The basic idea is you initial-
ize any variable to a safe default value before you use it.
Under this system my diary login code would become.

It is the ‘$logged_in = false;’ line that protects you
against people setting the value themselves. On the

function unregister_globals () {
 $REQUEST = $_REQUEST;
 $GET = $_GET;
 $POST = $_POST;
 $COOKIE = $_COOKIE;
 if (isset ($_SESSION)) {
 $SESSION = $_SESSION;
 }
 $FILES = $_FILES;
 $ENV = $_ENV;
 $SERVER = $_SERVER;

 foreach ($GLOBALS as $key => $value) {
 if ($key != �GLOBALS�) {
 unset ($GLOBALS [$key]);
 }
 }

 $_REQUEST = $REQUEST;
 $_GET = $GET;
 $_POST = $POST;
 $_COOKIE = $COOKIE;
 if (isset ($SESSION)) {
 $_SESSION = $SESSION;
 }
 $_FILES = $FILES;
 $_ENV = $ENV;
 $_SERVER = $SERVER;

}
unregister_globals ();

function diary () {
 if ($_REQUEST [�username�] == �Grendels�

&& $_REQUEST [�password�] == �xxxxxxxx�) {
 $logged_in = true;
 } else {
 show_login_form ();

 }
 ...
 if ($logged_in == true) {
 show_diary_entries ();
 }
}

diary ();

$logged_in = false;
if ($username == �Grendels�

&& $password == �xxxxxxxx�) {
 $logged_in = true;
} else {
 show_login_form ();

}

FEATURES

January 2003 · PHP Architect · www.phparch.com 53

Writing Secure PHP Code

face of it this is a good method. However I find that all
too often I add another variable somewhere and forget
to initialize it properly. The code is only secure when
you remember to do something, rather than being
secure unless you do something stupid. In the end it is
up to you which method you use, but you should
choose one method and stick to it.

If You Build a Wall

they Come in the Gate

Now that you have prevented hackers from sending
you information in places you did not expect, you may
think you have protected yourself against their attacks.
If only life were that easy! If they can’t send you infor-
mation in places your are not expecting, the next thing
hackers will try is sending the information where you
are expecting it, but not sending the information you
expect.

Unfortunately, we’ll need to review some theory in
this section, since the ways attacks can happen vary
greatly between scripts, and most are quite complicat-
ed to exploit. The techniques you will learn here aren’t
designed to defend your site against anything specific,
but to give a level of protection against a whole range
of things that could happen. In general, they are not
very complicated, but as with any part of your applica-
tion that is important to security, you should be careful
with them and test anything you write thoroughly.

Controlling What You Let in

Whenever you ask the user for information, you gen-
erally have a good idea what kind of answer you should
receive. For example, if you have a text box for people
to enter their age you should get back a number some-
where between about 5 and 130. Anything else is clear-
ly someone messing around. One of the best things
you can do to ensure your code is bullet-proof is to use
functions to check that each value received from a user
is valid. A simple function for checking something that
is meant to be an age might be:

This is so simple that many people wonder why I
bother making a function at all. The best way I can
answer that is to show you two examples, one with the
function and one without.

Using a function:

Without a function:

The difference in this particular case isn’t very big.
The significant difference is that the first example gives
you a better idea as to the intent of the code. It also
means if sometime in the future people live, on aver-
age, to 200 years of age, you can update all your age
checks by only changing one number in your code. The
difference will become more obvious as we start using
regular expressions.

A Real World Example

Let’s return to my diary. After showing it to a few of
my friends, they asked me if I could make them copies.
I decided instead that I would modify it so it could keep
diary entries for any number of people. That meant I
couldn’t just hard-code the values for username and
password anymore. I decided to use access functions to
make sure the username and password values people
chose couldn’t do anything nasty to my computer.

I decided I would set the following restrictions on the
username and password.

Username
- Must be at least 3 characters long, but no more

than 15
- Must only contain uppercase and lowercase

letters, numbers and underscores
- Must start with a letter

Password
- Must be at least 5 characters long, but no more

than 25
- Must only contain letters, numbers, or symbols

from the following list: ! £ $ % ^ & () [] { } @

These both illustrate two important concepts in data
validation. The first is the length of the value. You
should always have an idea of how long or short your
data is likely to be and limit the input to that. If noth-
ing else, this keeps your application from taking up all
the processor time by trying to process absurdly long

function is_valid_age ($param) {
 if (is_numeric ($param) && 5 < $param

&& $param < 130) {
 return true;
 } else {
 return false;
 }
}

if (is_valid_age ($_POST [�age�]) {
 echo �Hello! You are �.$_POST[�age�].� years old.�;
} else {
 echo �Bad Age!�;
}

if (is_numeric ($_POST [�age�]) && 5
< $_POST [�age�] && $_POST [�age�] < 130)

{
 echo �Hello! You are �.$_POST[�age�].� years old.�;
} else {
 echo �Bad Age!�;
}

FEATURES

January 2003 · PHP Architect · www.phparch.com 54

Writing Secure PHP Code

strings. The second is the concept of allowed and
denied characters. In general, you should have a list of
what is allowed and forbid everything else. For exam-
ple, someone’s name is likely to contain letters, spaces
and maybe hyphens. A name field should only accept
these and nothing else.

The username also shows another type of restriction
you can have on your data: giving different restrictions
on the first character. It is relatively simple but there is
no reason not to have a set of allowed values for each
part of your string. For example if you wanted the user
to give you a range of values you might check the
string contained a ‘-’ that wasn’t at the start or end.

So now to the actual code itself. From the amount of
time it took to get here you might expect a long and
complicated function. In fact, this is not the case.
Anyone who has used regular expressions probably has
a good idea of what it will look like. For everyone else,
here it is:

This tutorial is not here to explain in detail how reg-
ular expressions work. The only part I will highlight is
the ^ and $ at the start and end of the string. These
make sure the entire string must match, not just part of
it. If they were not there any username containing a let-
ter would match.

The regexp for the password is a bit more complex,
as it contains characters that are normally considered
by the preg_match functions to have a special mean-
ing. To get around this, they are escaped with back-
slashes. The function is:

With a little ingenuity and a good knowledge of reg-
ular expressions, you should be able to create access
functions for all your needs with little or no problem.
There are only two bits of advice I will give you here.
The first is to test everything. No matter how simple a
function is you should check it with some values that
should work and the same number that don’t. You
should test cases that nearly work but don’t quite, like
strings that are slightly too long or contain one or two
invalid characters . In the same way, you should also

check strings that are as long and as short as allowed
and contain every allowed character.

The other tip is to document every regular expression
you use. In the examples above I described in English
what each regexp did just above it. Doing the same will
make life much easier if you come back to your code
later and need to understand what the code there is
doing.

Now We Have Them, Let�s Use

Them!

Now let’s move away from writing validation func-
tions and move on to using them. If you are still unsure
about using functions rather than just putting the
checks straight into the code, go back and look at the
example dealing with age and imagine a complex reg-
ular expression there instead of the simple comparisons
it uses. (No, I don’t consider the regexps used to check
the username and password above complex.)

The most important issue in using validation func-
tions is remembering to. Using them only half of the
time is a dangerous waste. To get benefit from them
you have to be consistent . I do this by checking the
variable while it is in one of the superglobals ($_POST,
$_GET, etc) and, if it is valid, I transfer it into another
variable. I never use the superglobal variables directly in
my code. If I want to check back later I just search my
code for $_POST, $_GET and $_REQUEST and check
for a corresponding ‘is_valid_’ function call for each
one.

Another issue that can cause people problems is what
to do if a value they are checking doesn’t match. A lot
of people send it back to the user and ask them to cor-
rect it. Although this may sound convenient, it is gen-
erally a bad idea. Data which is invalid should be dis-
carded. In almost all cases it should not be sent back to
the user, or stored in a database or even logged in an
error file. There is no point in storing or saving things
that could cause your code to behave unexpectedly .
The user should be told it is invalid and politely asked
to enter it again.

A common mistake is to only check things which the
user has manually entered. A clever user can easily
modify any information they send the server, so cook-
ies, browser details and other information should be
checked too. Anything which has passed through the
user’s computer is potentially dangerous.

Cleaning What�s Left

Even if you are checking everything from the user
carefully, there are some cases when you have to allow
them to send characters that could be dangerous. For
example, a webmail client can’t refuse to send emails
containing characters other than letters, numbers and
spaces. The only real way to avoid problems in this sit-

function is_valid_username ($param) {
 // Check for a letter, followed by 2-14 other
 // letters numbers or underscores
 return preg_match (

'/^[a-zA-Z][a-zA-Z0-9_]{2,14}$/', $param);
}

function is_valid_password ($param) {
 // Check for between 5 and 20 letters, numbers
 // or one of the following:
 // ! £ $ % ^ & () [] { } @
 return preg_match (

'/^[a-zA-Z0-9!£\$%^&\(\)\[\]{}@]{5,20}$/',
$param);

}

FEATURES

January 2003 · PHP Architect · www.phparch.com 55

Writing Secure PHP Code

uation is to have a good understanding of exactly
where your data is going. This affects what is safe and
what isn’t. For example, things going to a shell contain-
ing ‘;’ and ‘|’ are dangerous, as they could allow some-
one to run commands on your server, but they are not
generally very dangerous to store in files.

To give you an idea of the kinds of things that can be
dangerous, I’ll take you through some common exam-
ples. I make no claim that the lists of dangerous char-
acters I give here are complete, nor is this a replace-
ment for Reading The Fine Manual. I’ll also look at ways
of allowing these characters while preventing them
from doing harm.

HTML

The most common format to which data from your
users will be transformed, sooner or later, is HTML.
Whether this is your public website, or some private
back end, allowing arbitrary HTML written by a user to
be displayed is a security problem. The danger can
range from showing a fake form asking users to reau-
thenticate and getting their passwords to using scripts
which can silently perform any action the current user
can do, to completely changing the look of your site.

Removing the threat of HTML in PHP is very easy. PHP
has two built in functions, ‘strip_tags()’ and
‘htmlspecialchars()’. The first of these will
remove any HTML tags from a string. The second will
convert unsafe HTML characters like ‘<’ and ‘>’ to their
encoded counterparts (< and > respectively).
Personally I prefer the ‘htmlspecialchars()’, as it
allows users to enter text contained within angle brack-
ets without it getting removed, but if your users regu-
larly try to use HTML, strip_tags will give a neater look-
ing output.

I do not recommend trying to identify certain “safe”
HTML tags and allowing them while disallowing others.
There are hundreds of ways of including scripts in a
page, so unless you are an expert in how all common
browsers render HTML (I know I’m not), you are likely
to make mistakes. Hotmail and Yahoo keep getting it
wrong, so you are likely to as well.

You should be especially careful of any text inside
HTML tags, e.g. allowing custom image URIs. This fur-
ther multiplies the number of ways scripts can be run.
If you must do this, I recommend that you remain very
strict about the format of all of your data.

SQL

Whenever general web application security is men-
tioned, SQL injection is never far away. SQL injection is
when an attacker uses malicious data to change an SQL
query, making it do something other than intended.
For example supposing you had a query like

sql_query (“SELECT * FROM members WHERE user-
name=’$username’ AND password=’$password’”);

This would normally select all details about the cur-
rent user from the database (checking their password at
the same time). However, with a bit of imagination it
can be made to do something more. Supposing
$username is equal to ‘; DELETE FROM members; — .
When the query is constructed by filling in the variables
it becomes:

SELECT * FROM members WHERE username=’’; DELETE
FROM members; — ‘ AND password=’pass’

As you can see the query has become two queries,
delimited by the semicolon (;), and will neatly wipe out
your member list. The ‘—’ at the end tells the SQL pars-
er everything following it is a comment and prevents
any parse errors. In SQL possibly dangerous characters
are “, ‘ and \, assuming all your values are inside
quotes.

In spite of the potential severity of SQL injection, usu-
ally while programming in PHP you don’t need to
worry about it as often. The first reason for this is the
PHP setting called magic_quotes_gpc. This automati-
cally escapes any dangerous data coming from the
user. For example ‘; DELETE FROM members; — would
become \’; DELETE FROM members; — and would pre-
vent the sql engine thinking it had reached the end of
the string. This does not mean you can completely for-
get about SQL injection. Data which does not come
from the GPC variables (e.g. something selected from
the database itself) is not protected. For this you need
to use an escaping function.

The built-in escaping function in PHP is ‘addslash-
es()’. This should be safe enough. However, some
database interfaces also provide their own functions,
such as ‘mysql_escape_string()’. If the extension
your database uses has a function like this I suggest you
use it. This means your code is more likely to stay cor-
rect if that database engine is changed in some strange
way.

The other reason it is not often a problem only
applies to the MySQL database engine, but since the
majority of PHP powered sites on the web use MySQL
I feel justified in mentioning it. MySQL only allows one
query per call to mysql_query, so in fact it is impossible
to add another query adding or deleting from the data-
base. It is still possible, however, to modify the query
that is run, and MySQL version 4.0 offers many more
features, so you should still be careful.

Files

Files are in some ways the easiest place to store data
safely. In general you can put anything you like in a file
without fear of the underlying filesystem having prob-

FEATURES

January 2003 · PHP Architect · www.phparch.com 56

Writing Secure PHP Code

lems. One problem with files comes if you are not writ-
ing the program that reads them. If this is the case you
should make sure you fully understand the file format
expected by the program that reads it.

Remember that programs that might read these files
include your web server. If you are using files for stor-
ing information make sure they are in folders unavail-
able from the client. If that is not an option, try using
.htaccess files in apache, or the equivalent configura-
tion settings in your webserver to restrict access. Keep
in mind, though, that keeping the files in an inaccessi-
ble folder is a better option.

The luxury of assuming the safeness of the contents
of files does not carry over to the file name. Again if at
all possible you should not use user-supplied data in
filenames. If you have to, you should reject any names
containing ‘\’, ‘/’, ‘ ‘ or ‘.’.

system() and exec()

If you are passing data to another program by using
functions like ‘system()’ or ‘exec()’ you must be
very careful. Again you should be as strict as possible
with what you let in. My suggestion is to surround any
arguments from the user in single quotes. For example
instead of using

do

This means most shell escape characters like ‘;’ and
‘|’, which allow other programs to be run will just be
treated as normal characters. A nasty attacker could
break out of this by adding another single quote some-
where in their data, so you have to escape all of those
characters with ‘\s’. All ‘\s’ should also be escaped.
This can be done simply with ‘str_replace()’.

The backslashes have all been doubled to make PHP
treat them as normal characters.

Better still, whenever possible, you should not allow
‘\’, or ‘’’anywhere in the string, and preferably not ‘;’
(new command) ‘|’ (pipe to another command), or the
redirection operators ‘>’ and ‘<’ either. You should
study the documentation for your environment for any
other characters with special meaning and make sure
they are excluded too.

Trying not to GET the POST

Another issue that many PHP scripters overlooked
while register_globals was widely used was the
distinction between GET and POST data. Many people
would also say there is, in terms of security, essentially
no difference between them. An attacker can fake
either of them easily and neither offers much protection
for the data in transit. They would also say that any
problems with proxy servers caching GET data should
be avoided by setting the type of form used and check-
ing that the script doesn’t add anything.

The HTTP spec says that anything which affects data
beyond the current request must be sent as a POST. No
problem with this, we can just make sure our forms use
POST, alleviating the need to code our scripts to check
that data was sent using a POST operation. In spite of
what is commonly believed however, quite a lot of the
time an attacker can trick a user into sending GET data
but not POST data. The best way to demonstrate this is
with an example.

Image you run a set of forums on the Internet that
use cookies. You decide you want to allow users to
include images in their posts. This all works fine until
one day when someone comes along and enters an
image with the URI http://www.my-cool-
boards.com/admin.PHP?delete_all_posts=true. Most
people will just see a little cross to say the location
given isn’t an image. When the admin comes along
and looks however it is a bit more serious. He sees the
little cross, but then when he goes back to the main
page he finds all the posts on the forums have been
deleted. As the request was made from his browser ses-
sion the site thought it was him asking to do it and hap-
pily deleted everything!

If his script had checked to insure that the data was
POSTed nothing would have happened. When loading
up that page it would have seen the data was GETed
and ignored the request. Several of you are now prob-
ably thinking: Well the forums shouldn’t use cookies for
authentication. It is true that cookies on their own are
lacking as a way of identifying people and in general
you should combine them with a method like URL
encoded values. You should, however, always be aware
that GET data is just slightly easier for attackers to fake

exec ("./log_access $user_var");

exec ("./log access �$user_var'");

$user_var = str_replace ("\\", "\\\\", $user_var);
$user_var = str_replace ("'", "\\'", $user_var);

By far the simplest and possi-

bly the safest way to avoid

problems caused by

register_globals is simply to

turn it off.

FEATURES

January 2003 · PHP Architect · www.phparch.com 57

Writing Secure PHP Code

than POST data. If it should always be POSTed, it is
good practice to check.

So how do you make sure your apps only respond to
POST requests? The first method is easy, simply use the
$_POST superglobal instead of $_REQUEST to access
your variables. In any situation where you have a form
being filled in or a button clicked to determine what
should be done , accessing the value using $_POST is
recommended. There is another way to perform this
check which some may prefer, which involves using a
simple is_posted() check that will work with all
forms. In fact, it is your only option if you are not pass-
ing any values to the page.

To use this method, just look at the
$_SERVER[‘REQUEST_METHOD’] variable. If the
request to your page has been posted it will be equal to
‘post’, although not necesarily lower case. The is_post-
ed() function I mentioned earlier could be coded sim-
ply as

A simple extension on this idea would be a
check_post_request() function that printed out
an error message, then terminated the script if the form
was not posted.

Just When You Thought

it Was Safe...

All the items mentioned in this article are important
and necessary if you want to create a safe application. I
have tried to focus on issues that can be brought about
by an attacker relatively easily, just by giving your appli-
cation information it does not expect, or in a way it
does not expect. This is by no means a conclusive look,
however, and it should be noted that you can follow all
of these guidelines perfectly and still have an insecure
site. Absolute 100% security is impossible, but if you
want to make your sites as hack-resistent as possible
you should not stop here.

There are lots of resources available on the Internet,
and plenty of people out there willing to answer your
questions. Read everything you can that deals with
security, and slowly you’ll learn where all the holes are
and how to plug them (well, most of them anyway).

Theo Spears is a college student based in the UK. He learned PHP in
2000 to avoid having to use perl for a web project and has successfully
been using it to avoid perl ever since. Theo now spends most of his cod-
ing time working on systems to make it easier to write secure and versa-
tile applications. You can reach him at postmaster@terrarium.f9.co.uk

php|a

www.cyberbite.com

CYBERBITECYBERBITE
W E B H O S T I N GW E B H O S T I N G

Revolving around YOUR business

Designed for PHP Programmers Virtual Private Servers & Dedicated Servers

Reliable Internet hosting solutions Guaranteed 99.95% uptime

function is_posted () {
 return strtolower (

$_SERVER [�REQUEST_METHOD�]) == �post�;
}

Hackers will try sending the

information where you�re

expecting it, but not sending

the information you expect.

R
E
V
IE

W
S

REVIEWS

Price: N/A (free)

Pop quiz, hotshot: your PHP-based website has sud-
denly risen in popularity. Your traffic has increased

by 50%. Your manager is breathing down your neck.
What do you do?

From a performance perspective, the problem (and,
in some cases, the advantage) of a language like PHP is
the fact that scripts based on it have to be read, inter-
preted and executed by the PHP engine every time
they are run. By contrast, compiled languages like C
produce output that is in native binary code and can be
executed directly by the operating system (but is not
portable).

Although for the most part the overhead caused by
parsing the scripts is negligible on a server that does
not have to support a significant amount of traffic, for
a very popular website it can be a big problem. This is
because, on a large scale of tens of thousands of page
impressions, the time that it takes for the PHP engine to
transform a source file from text into execution data
that it can process (also known as bytecode) adds up
pretty quickly and can become a significant perform-
ance impairment.

Enter the Cache

If your site’s popularity grows by some disproportion-
ate magnitude overnight, the first impulse is always to

add more hardware. There are, however, a number of
problems with adopting this approach. First of all,
hardware is expensive—at least in relation to open-
source software. Second, it takes time to set it up; you
have to order the parts, install all of the software and
then somehow set up your server farm so that your traf-
fic is balanced among multiple servers. Third, it is very
expensive to maintain. Each new server means a new
machine that must be patched, monitored, cleaned
and that could be yet another door through which a
hacker could gain access to your data.

A software solution—preferably one that is easy to
implement—should therefore be the first choice when
you’re at odds with your site’s performance. Caching
engines (CEs) may be exactly what you need.

A CE works by “capturing” your script once it has
been converted to bytecode the first time that it is exe-
cuted. The next time the same script is requested, the
caching engine simply forces PHP to run the bytecode
version without going through the whole parsing
process once again and, in so doing, drastically reduces
the overhead involved with fulfilling a request made by
a client for the script.

Some other scripting platforms, like Microsoft’s ASP,
provide this mechanism as part of their standard distri-
butions. Some others, like Java, solve it by actually com-
piling the code directly into bytecode format. In PHP,
however, this optimization is not included in the stan-
dard package and must be performed by an external
module.

January 2003 · PHP Architect · www.phparch.com 58

Reviewed For You

ionCube

PHP Accelerator

by ionCube Ltd.

REVIEWS ionCube PHP Accelerator by ionCube Ltd.

This is, essentially, a “good thing”, since it makes it
possible for different caching engines to exist and to
compete for the best performance possible. It also
means that, if your site is having performance issues
and you never considered the use of a CE, you’ve just
won the lottery and the right caching strategy can
make the difference between running around like a
chicken with its head cut off and running around with
your head cut off like a chicken (I’ll let you figure out
which one is best).

ionCube PHP Accelerator

There are, in the true spirit of capitalist competition,
a number of caching engines for PHP available on the
market. In this review, we will examine the ionCube
PHP Accelerator, or PHPA (not to be confused with
php|a!). Produced by U.K.-based ionCube Ltd., PHPA is
a very mature application that has gone through sever-
al releases, is well tested and very well supported (more
about that later).

PHPA is available free of charge, but it is not an open-
source product (although its website hints at the fact
that the source code might be released in the future).
Luckily, there are binaries available for most platforms,
including Linux, Solaris and Free/NetBSD. There is no
support for Windows or MacOS at this time.

Although PHPA comes with no formal setup applica-
tion, installation is truly a breeze—and, at least on
Linux, the package is tiny (only about 55kB). All you
have to do is copy the accelerator’s library and add a
single line to your php.ini file. PHPA configures itself as
a Zend extension, which gives it complete access to the
PHP engine.

Caching Strategies

All the caching engines available for PHP support two
main caching strategies, one based on temporary files
and the other on shared memory. In the first case, the
CE stores the bytecode version of a script in a tempo-
rary file and then reloads it every time that script is exe-
cuted. Although this is a big improvement over having
to recompile the script every time, it’s not as efficient as
its shared memory (SHM) counterpart, in which a sin-
gle cache object is created and shared among several
instances of PHP.

The reason why all engines implement both schemes
is that SHM is not available on all platforms and, there-
fore, temporary files must be used in some cases even
though they do not provide the best performance.

Performance

So, how much of a difference does having PHPA
make? Simply put—a lot.

We performed a series of tests to verify how well

PHPA does in relation to “plain” PHP and two other
very popular acceleration engines, the Advanced PHP
Cache (APC) and the Zend Performance Studio. APC is
a true open-source CE, while Zend Performance Studio
is a commercial product published by Zend
Technologies that also includes a content caching
engine (that is, a CE that caches a page output rather
than its compiled source code), which we turned off for
our test, so that we could (hopefully) compare apples
to apples.

We ran a series of tests using three scripts from the
php|a websites. Index.php, our main page, is a light
database-driven script that performs mostly simple
queries and text output with little logic behind them.
Subscribe.php, on the other hand, is a very complex
script with more than one thousand lines of code.
Finally, Advertise.php, our advertiser information page,
features no database access at all and contains very lit-
tle PHP code. The idea behind these choices is to show
how well a CE performs in three different scenarios of
varying complexity.

Listing 1 shows the code used to perform these tests.
As you can see, we essentially retrieve a particular web
page from our test server one hundred times. Our
Apache/PHP 4.2.2 server was reset with a hard reboot
before each run (to ensure a fresh start every time) and
the test script was run through the CGI version of PHP
with all caching turned off, to ensure that the CE would
not affect its performance and skew the results.

In our measurements, we looked at the “time to first
response”, the “time to second response” and the aver-
age execution time over 100 responses. The first value
tells us how efficient the compilation process is, since
the first time we run a script the CE has to parse it, opti-
mize it and store it in its cache. The time to second
response tells us how efficient the script becomes right
after it has been cached. Finally, the average over 100
responses provides a good overview of the perform-
ance improvement provided by the CE. It should be
noted that, in a real-life environment, the number that

January 2003 · PHP Architect · www.phparch.com 59

1 <?php
2
3 function getmt()
4 {
5 $a = explode (' ', microtime());
6 return (double) $a[0] + $a[1];
7 }
8
9 $file = "http://127.0.0.1/advertise.php";
10
11 for ($i = 0; $i < 100; $i++)
12 {
13 $start = getmt();
14 file ($file);
15 echo (getmt() - $start) . "\n";
16 }
17
18
19 ?>

Listing 1

REVIEWS ionCube PHP Accelerator by ionCube Ltd.

really counts is the averaged response time. The first-
and second-response measurements are just a way to
figure out how good the CE’s parsing system is and,
since they are relevant only the first time the script is
executed, would not affect the performance of a web
application in a production environment.

We started by testing PHPA against plain PHP. As you
can see from Figure 1, the overall performance
improvement provided by PHPA is very significant, even
if you keep in mind that these tests were run in “opti-
mal” conditions, that is, with only one client at a time
requesting pages in a serialized fashion. In a live envi-
ronment, with several clients hitting a script at the
same time, PHPA would provide the additional benefit
of reducing hard disk usage, thus increasing the per-
formance even more. Not surprisingly, the biggest
improvement is in subscribe.php, which is also the
most complex script. You will also notice that PHPA’s
time to first response is slower in the first two cases.
This is due to the fact that the CE has to cache the
script—something that the PHP engine doesn’t normal-
ly have to do.

Comparing PHPA with its competitors provided us
with some interesting results. As you can see in Figure
2, APC is significantly less likely to make a significant
difference in the performance of PHP than PHPA—so
much the pity, since it is open-source and we all could
have learned from it. Unfortunately, APC has also suf-
fered from a lack of updates and active development
for quite a while now.

Figure 3 shows our comparison with the Zend
Performance Suite (which we reviewed in last month’s
issue). Again, keep in mind that we tested the ZPS with

the content caching engine turned off (and, as you
may remember, that made quite a difference in our
previous tests). Still, it performed slightly better than
PHPA, although not significantly so.

Customer Support

With a product that is so tied with the core function-
ality of PHP, customer support is a feature you don’t
want to miss on. Although the words “review” and
“magazine” usually have a magical effect on getting
companies to return requests for information quickly,
we were simply amazed at how dedicated the PHPA
team is to their product—suffice it to say that our
requests for assistance were answered in less than ten
minutes on a Sunday afternoon. Anyone who’s ever
been on the phone with Microsoft Technical Support
Services should have a fair idea of how good this
response time is!

The Bottom Line

Our conclusion is that PHPA is a product worth hav-
ing as part of your web installation. Although it’s not as
complete as the ZPS, which also features a complete
installation package, as well as built-in content caching
and output compression, PHPA comes with an unbeat-
able price and a customer support that many compa-
nies still can’t provide.

January 2003 · PHP Architect · www.phparch.com 60

php|a

Time to 1st Time to 2nd Avg/100 times Time to 1st Time to 2nd Avg/100 times Time to 1st Time to 2nd Avg/100 times

index.php 0.0209 0.0135 0.0111 0.0261 0.0169 0.0169 19.97% 19.98% 34.52%

subscribe.php 0.0698 0.0351 0.0213 0.0632 0.0427 0.0395 -10.51% 17.69% 46.23%

advertise.php 0.0090 0.0075 0.0075 0.0372 0.0374 0.0406 75.83% 80.05% 81.57%

PHPA APC Difference

Figure 2

Time to 1st Time to 2nd Avg/100 times Time to 1st Time to 2nd Avg/100 times Time to 1st Time to 2nd Avg/100 times

index.php 0.0209 0.0135 0.0111 0.0198 0.0134 0.0110 -5.45% -1.04% -0.73%

subscribe.php 0.0698 0.0351 0.0213 0.0502 0.0233 0.0204 -39.15% -50.75% -4.32%

advertise.php 0.0090 0.0075 0.0075 0.0076 0.0069 0.0072 -18.29% -8.12% -3.89%

PHPA ZPS Difference

Figure 3

Time to 1st Time to 2nd Avg/100 times Time to 1st Time to 2nd Avg/100 times Time to 1st Time to 2nd Avg/100 times

index.php 0.0209 0.0135 0.0111 0.0190 0.0177 0.0187 -9.72% 23.50% 40.84%

subscribe.php 0.0698 0.0351 0.0213 0.0598 0.0538 0.0457 -16.66% 34.71% 53.48%

advertise.php 0.0090 0.0075 0.0075 0.0175 0.0170 0.0172 48.54% 56.01% 56.41%

PHPA PHP (no cache) Difference

Figure 1

January 2003 · PHP Architect · www.phparch.com 61

php|architect

Ottawa, January 25 & 26, 2003

F
E
A

T
U

R
E
S

FEATURES

January 2003 · PHP Architect · www.phparch.com 62

Quite a large number of websites use PDF files as a
way to distribute some of their information. Aside

from companies that, like php|a, make extensive use of
this format, many others use it for small documents,
such as forms, prospecti, brochures and so on. Clearly,
they find PDF attractive because of its typographical
accuracy and the compactness of its files.

There is, of course, one big assumption behind all
this—that the users have a PDF viewer. If they don’t—
and many people still don’t—no matter how small your
document is, they will still have to download a viewer,
and Adobe Acrobat is (in its simplest form) an 8 MB
monster. As it turns out, while you think that you’re
providing a valuable service to your users by offering
them a slim and elegant PDF document, you run the
risk of alienating them because not everyone wants to
sit around while his or her 56kbps modem downloads
a huge program to read two pages of information!

A Simple Solution

There is a simple solution to this problem. If you think
of PDF files (once rendered on a screen or on a sheet of
paper) as very detailed images, it’s not completely
inconceivable to think that you could, indeed, serve
them as such from your website. It is therefore possible
to create a simple, yet complete (in terms of detail and
typographical fidelity) web-based PDF viewer that
requires no software downloads or installations, and no
plug-ins, with the added bonus that it will work on any

browser capable of displaying images.
Clearly, an image depicting a PDF document’s page

has to provide a certain amount of detail, so that it will
look pleasant and professional to the user. As such, you
can expect file sizes that would normally be considered
too large for a web application—say in the one hun-
dred to two hundred kilobytes range—but that are very
small when you compare them with the size of a PDF
viewer.

Still, there is one major issue that you should take into
consideration, and that’s bandwidth usage. In fact,
while most users will be downloading a viewer directly
from the website of the company that produces it (for
example, Acrobat is usually downloaded directly from
Adobe’s website), if you want to serve the file’s pages as
images, you will have to do it directly from your servers.
Depending on the amount of traffic that you serve, this
can mean a significant increase in the amount of band-
width that your site uses, which, in turn, can result in
additional expenses for your company.

Enter Ghostscript

As I mentioned in my PDF conversion article pub-

Writing a Web-based

PDF Viewer

By Marco Tabini

There is nothing as annoying as having to download a 10 MB PDF viewer to be able to read a two-page document.
With a bit of help from a few open-source friends, it is actually possible to write a web-based PDF viewer that requires

no plug-ins or external applications on the client side.

PHP Version: 4.0 and above

O/S: Any

Additional Software: Ghostscript 5.0 and above,

ImageMagick

REQUIREMENTS

FEATURES

January 2003 · PHP Architect · www.phparch.com 63

Writing a Web-based PDF Viewer

lished by php|a last month, Ghostscript is a very sophis-
ticated PostScript interpreter that provides a wide array
of functions. One of these is the ability to create raster-
ized image versions of PostScript documents. This
should not come as a particular suprise, since
Ghostscript is very often used as the underlying soft-
ware for viewing PostScript files on a computer’s mon-
itor, and this obviously requires that it be able to gen-
erate bitmaps that can be visualized on-screen. From
there, it’s a short jump to being able to save these
bitmaps in one of several standard formats, such as
JPEG and PNG. In fact, a quick look at Ghostscript’s
functionality reveals that it supports several variations
of either of these standard formats, as shown in Figure
1.

A problem that is immediately obvious, however, is
that image formats can usually only contain one frame
at a time in a manageable way. GIF, for example, sup-
ports animations, but it is neither open-source nor eas-
ily manageable, since there’s no way to control how
each frame of an animated image is displayed. MNG
(pronounced “Ming”) is an open-source alternative to
GIF, but it is not widely supported by the most popular
web browsers and suffers from the same manageability
problems. What’s more, at high resolutions our PDF
images are likely to become very large, and storing
them in a single file would pose additional—and use-
less—strain on the application’s bandwidth usage.

Luckily, Ghostscript makes it possible to easily over-
come this issue by providing a file naming mechanism
that can be used to separate a PostScript file’s convert-
ed version in individual files, one for each page. All
that’s needed is the addition of the %d (or %ld) param-
eters to the file name. For example:

will create a set of files named test1.png, test2.png,
and so on, depending on the number of pages con-
tained in test.pdf.

Handling Zoom and

Making Images Prettier

If you try to manually convert a PDF file into a series
of images using Ghostscript, you’ll find that the output
quality is not particularly good: the fonts, in particular
appear jagged at the edges and not as smooth as we’ve
come to expect from the commercial PDF viewers. This
is because the Ghostscript rendererer was not really
designed for on-screen output, but rather for printer
devices and, therefore, there are no provisions in it for
“anti-aliasing”, the technique used to smooth the
appearance of fonts on-screen.

Another problem in need of a solution is how to han-
dle zooming. Unlike PDF files, pictures cannot be
zoomed in and out with a browser and, even if they
could, their quality would suffer, because their resolu-
tion is fixed at the time of creation. A possible solution
would be letting Ghostscript generate a different set of
images at different resolutions by using the -r com-
mand-line switch. For example, “100%” zoom-level
would correspond to 72 dpi (your typical screen resolu-
tion), which, for a normal letter-size page would give us
a width of 8x72 = 576 pixels and a height of 756 pix-
els. Similarly, 200% zoom would correspond to 144
dpi, or an image 1,152 pixels wide by 1,512 pixels
high.

While this is the solution that I have ultimately adopt-
ed for my PDF viewer, I wasn’t very satisfied with its ini-
tial implementation, which relied exclusively on
Ghostscript. For one thing, PDF rendering can be very
slow, depending on the complexity of the document
being converted. Wasting an inordinate amount of
time in this process didn’t seem like a good choice to
me, since uers tend grow annoyed quickly these days.
Additionally, this still didn’t get rid of the image quality
problems, s the fonts still appeared jagged no matter
the output resolution.

To improve my PDF viewer implementation, I turned
to another freely available (and open-source) product
called ImageMagick, which was developed by John
Cristy and whose home page can be found on the Web
at http://freealter.org/doc_distrib/ImageMagick-5.1.1/.
ImageMagick is a set of tools designed for the manipu-
lation of images with an impressive line-up of features,
including format conversion, resizing, resampling,
drawing, and so on.

Although ImageMagick provides several command-
line interfaces, we’re only interested in a tool called
mogrify. Among this tool’s many useful features is the
ability to resample an image using a bilinear algorithm.
Invoking mogrify to resample a page to a certain reso-
lution requires the use of just a handful of parameters:

png16 16-colour PNG (4 bpp)

png256 256-colour PNG (8 bpp)

png16m True-colour PNG (24 bpp)

jpeg True-colour JPEG

jpeggray Gray-scale JPEG

Figure 1 - PNG and JPEG Bitmap devices

gs -dNOPAUSE -dBATCH -sDEVICE=png256
-sOutputFile=test%d.png test.pdf

mogrify -scale width filename

FEATURES

January 2003 · PHP Architect · www.phparch.com 64

Writing a Web-based PDF Viewer

Based on what we have looked at so far, our page-dis-
play strategy will work as follows:

1) Fetch PDF file from user
2) Convert PDF to PNG-256 format using

Ghostscript at high resolution (100-300
dpi)

3) Whenever asked to visualize a page,
resample it to the appropriate zoom level
using mogrify

As you can see, the process is rather simple, but it
poses a few challenges. First of all, we need more con-
trol over the PDF file—how do we know that the user
won’t upload a file that is 200 pages long, thus causing
significant strain on our servers? Moreover, if the user
asks to view the same page at the same zoom level, we
should provide some sort of caching mechanism to pre-
vent wasting time and resources by mogrifying again.
Finally, we should prevent the user from copying the
images directly from our web server, so that our PDF
viewer doesn’t become the “free PDF-to-PNG convert-
er of choice” for the web!

Limiting the Page Count

There are a number of different ways to determine
how many pages a PDF document has. I have chosen
to use a simple program called pdfinfo, which was
developed by Derek D. Noonburg (who also happens
to be the author of the free PDF viewer xpdf) and is
freely available from
http://www.opengroup.org/infosrv/PDF/xpdf/.
Pdfinfo is highly portable and can be run on a

number of platforms, including several flavours of UNIX
and Windows. In addition, it is tiny and self-con-
tained—which also means that it’s fast and doesn’t use
too many system resources when it runs. Finally, it fully
supports encrypted PDFs, thus making the upgrade of
our viewer to include that functionality quick and easy.

The interface to pdfinfo is rather simple. In fact, for
our purposes we only need to pass to it the name of the
PDF file that it must read:

A call to pdfinfo returns a list of parameters taken
from the PDF file—Figure 2 shows an example—includ-

ing its page count. All we need to do is parse the
results using the simple script shown in Listing 1, and
we will be able to use the expression $args[‘Pages’] to
determine whether the PDF is too big for us to process.

File Organization and Caching

To make it easy to manage the many files that are
generated by the PDF viewer, I’ve used a simple file
naming convention. When the PDF file is initially con-
verted over to a high-resolution set of images, we start
by generating a temporary file name and passing it to
Ghostscript using the %ld parameter. As mentioned
earlier, this effectively creates a set of files that end with
the number of the page they contain.

Next, a different file has to be created for each of the
various zoom levels. Since the application can handle
several different levels, it is not a good idea to generate
all the pages right away, as that can potentially take a
significant amount of time. Therefore, the application
generates each file using a just-in-time approach—that
is, it runs mogrify whenever the user requests a partic-
ular zoom level of a specific page.Bear in mind that this
approach is not very performance-conscious. One rea-
son for this is because as the user flips through the
pages of the PDF file he or she is likely to load the same
page twice, resulting in mogrify being executed more
than once for a particular page/zoom level combina-
tion.

This problem can be solved by simply adopting a
properly devised naming convention for the zoomed-in
image files as well. In our case, I simply append the suf-
fix ‘s{zoom-level}’ to the name of each file once it’s cre-
ated and allow it to exist past the execution time of the
script that shows the zoomed-in image to the user. This
way, whenever that script is executed, it verifies

whether a file matching the proper
naming convention for the current
file, page number and zoom level
exists, and in that case outputs its
contents without invoking mogrify
again.

Clearly, this approach tends to
clutter up your temporary directo-
ries. However, you can easily solve

Figure 2 - Typical pdfinfo output

Producer: GNU Ghostscript 6.52
Tagged: no
Pages: 11
Encrypted: no
Page size: 595 x 842 pts (A4)
File size: 77274 bytes
Optimized: no
PDF version: 1.2

if (!exec ("pdfinfo {$_REQUEST['userfile']['tmp_name']}", $args))
 die ('Error converting PDF file [possibly encrypted?]');

foreach ($args as $v)
{
 $data = explode (":", $v);
 $args2[trim ($data[0])] = trim ($data[1]);
}

Listing 1

pdfinfo pdffile

FEATURES

January 2003 · PHP Architect · www.phparch.com 65

Writing a Web-based PDF Viewer

this problem by establishing a timeout period and cre-
ating a scheduled script that deletes stale files accord-
ing to your needs.

Preventing Image Theft

Tweaking our code so that users cannot save our
images to their hard drive is tricky—anything that
affects the usability of the application under any but
the most odd circumstances is a definite no-no.

The easiest way to ensure the safety of the images
generated by the application, therefore, is to prevent
their indiscriminate usage, rather than trying to cover
all the possible scenarios in which a violation could
occur. In fact, just ensuring that an automated program
won’t be able to run a hundred PDF files through the
viewer and collect the results should be enough—I
doubt that a sane person would bother to do so by
hand.

The technique that I have chosen to use consists of
examining the contents of the HTTP_REFERER param-
eter that is passed by the web server to PHP in the
$_SERVER superglobal array. This parameter contains
the address of the last page that the user’s browser vis-
ited prior to attempting to retrieve the current one.
Under normal circumstances, when an image is being
downloaded it will contain a page that resides in the
current domain—that would be the page that contains
the tag which causes the image to be shown.
Therefore, if the contents of the referer string do not
match the domain in which the image generation
script resides, we simply interrupt the execution and
output an error.

Of course, there are a number of limitations in this
mechanism. For starters some older browsers do not
support the referer mechanism. These are, however,
very rare and represent a tiny percentage of the
Internet userbase. Similarly, some “privacy enhance-

1 <?php
2 if (!isset ($_FILES['userfile']) || $_FILES['userfile']['error'] || !is_uploaded_file ($_FILES[
'userfile']['tmp_name']))
3 die ("File upload error. Please try again.");
4
5 session_start();
6
7 if (!exec ("pdfinfo {$_REQUEST['userfile']['tmp_name']}", $args))
8 die ('Error converting PDF file [possibly encrypted?]');
9
10 foreach ($args as $v)
11 {
12 $data = explode (":", $v);
13 $args2[trim ($data[0])] = trim ($data[1]);
14 }
15
16 if ($args2['Pages'] > 10)
17 die ('This converted only supports a maximum of 2 pages');
18
19 $_SESSION['args'] = $args2;
20 $_SESSION['max_zoom_level'] = 4; // Maximum zoom level
21
22 $tempfilename = tempnam ($_SERVER['DOCUMENT_ROOT'] . '/tmp', 'pdf');
23 $tempfilename2 = tempnam ($_SERVER['DOCUMENT_ROOT'] . '/tmp', 'pdf');
24
25 copy ($_FILES['userfile']['tmp_name'], $tempfilename2);
26
27 // Prepare high-res files
28
29 shell_exec ("gs -dNOPAUSE -dSAFER -sDEVICE=png16m -r200 -sOutputFile=$tempfilename%ld.png -
dBATCH {$_FILES['userfile']['tmp_name']}");
30
31 $_SESSION['imgid'] = $tempfilename;
32 $_SESSION['docid'] = $tempfilename2;
33
34 ?>
35 <html>
36 <frameset cols="100,1*">
37 <frameset rows="1*, 100">
38 <frame src="header.php">
39 <frame src="footer.php">
40 </frameset>
41 <frame name=downtarget src="view.php?p=1&z1=1">
42 </frameset>
43 </html>
44

Listing 2

FEATURES

January 2003 · PHP Architect · www.phparch.com 66

Writing a Web-based PDF Viewer

ment” systems prevent the browser from passing the
referer along to the web server—those users will not be
able to use the viewer at all, and it’s up to you to decide
whether you are willing to forego support for them in
favour of at least some level of protection against image
theft. Finally, the referer data is, in the end, user input
and, as such, it can be faked in a relatively easy way,
particularly by a program.

Still, even with all its limitations, this method pro-
vides, in my opinion, a good balance between security
and simplicity and, although there are certainly other
techniques that can be considered, it should be good
enough for the needs of the average website.

On to the Code

The most complex part of the system’s implementa-
tion is really organizing the viewer’s main interface,
since we need to provide a way for it to work seamless-
ly from the user’s point of view.

In my case, I’ve decided to use a frameset, since most
of the interface doesn’t really change from page view
to page view. As you can see in Figure 3, the screen is
divided into three different sections. The bottom left
corner contains general information—the output of the
pdfinfo call—about the PDF file that is being viewed,

while the top left part of the screen provides a simple
interface to jump to a page or change the current zoom
level. Finallly, the current page is displayed in the large
area on the right.

As you can see in Listing 2, the main interface layout
is determined by the upload.php script, which also per-
forms the initial checks on the PDF file and invokes
Ghostscript to generate the high-resolution rendition of
the page images. The key parameter to keep in consid-
eration here is -r, which is used to determine the reso-
lution at which Ghostscript outputs its images. Giving
this parameter higher values (I use 200 dpi in my exam-
ple and that’s already very high) will result in better
results in term of quality, but slower image processing
and bigger image files.

Upload.php receives as its input a file from the user,
which is uploaded through the index.php page. For a
more detailed discussion about file uploads in PHP, you
can refer to my article on PDF conversion in the
December 2002 issue of php|a.

The use of sessions in our application allows the three
frames that comprise the main interface to share infor-
mation about the image file names and PDF parameters
without passing them explicitly through the browser,
thus protecting the code from unwanted and potential-
ly dangerous outside interference.

1 <?php
2 session_start();
3
4 $compare_string1 = 'http[s]?://' . $_SERVER['HTTP_HOST'] . '/header.php';
5 $compare_string2 = 'http[s]?://' . $_SERVER['HTTP_HOST'] . '/upload.php';
6
7 $page_id = $_GET['p'];
8 $zoom_level = $_GET['z1'];
9
10 if ((!is_numeric ($page_id) || $page_id < 1 || $page_id > $_SESSION['args']['Pages']) ||
11 (!is_numeric ($zoom_level) || $zoom_level < 1 || $zoom_level > $_SESSION['max_zoom_level'])
)
12 die ('Invalid access.');
13
14 $file_name = $_SESSION['imgid'] . $page_id . 's' . $zoom_level . '.png';
15
16 if (ereg ($compare_string1, substr ($_SERVER['HTTP_REFERER'], 0, strlen ($compare_string1))) |
| ereg ($compare_string2, substr ($_SERVER['HTTP_REFERER'], 0, strlen ($compare_string2))))
17 {
18 if (!file_exists ($file_name))
19 {
20 copy ($_SESSION['imgid'] . $page_id . '.png', $file_name);
21 shell_exec ('mogrify -scale ' . ($zoom_level * 250) . ' ' . $file_name);
22 }
23
24 header ("Content-type: image/png");
25 header("Expires: Mon, 26 Jul 1997 05:00:00 GMT"); // Date in the past
26 header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");
27 // always modified
28 header("Cache-Control: no-store, no-cache, must-revalidate"); // HTTP/1.1
29 header("Cache-Control: post-check=0, pre-check=0", false);
30 header("Pragma: no-cache"); // HTTP/1.0
31 readfile ($_SESSION['imgid'] . $page_id . 's' . $zoom_level . '.png');
32 }
33 else
34 die ("Invalid Access. Please try again...<p>");
35 ?>

Listing 3

FEATURES

January 2003 · PHP Architect · www.phparch.com 67

Writing a Web-based PDF Viewer

Naturally, under normal circumstances, sessions are
still vulnerable to “hijacking”—that is, a malicious user
could, in theory, intercept the browser’s transmission to
the server, capturing the session ID generated by our
scripts as a result. That ID could then be used by the
would-be hacker to impersonate the user and gain
access to the PDF file he or she was reading. However,
for the typical usage of this application, the level of
security offered by sessions should be good enough—
and you can always provide further protection by plac-
ing your pages under HTTPS.

Never Trust User Input

Since as much data as possible is managed through
sessions, the only bits of input that the application
receives directly from the user is the input PDF file,
which is examined carefully by the upload.php script,
and the page numbers and zoom levels, which are
looked at in the view.php script (Listing 3). As you can
see, the script ensures that these parameters are
numeric in nature and that they do not exceed proper
values (if they do, an error is returned). Line 16 provides
the mechanism to determine whether the user is com-
ing from within the script’s domain or not, in which
case the script dies with an error message.

View.php is also used to generate (or retrieve) a
zoomed-in image. The $file_name variable is built
using a combination of session and properly filtered
GET variables in accordance with the naming conven-
tion that I mentioned above. The ImageMagick mogri-

fy command is only executed if a particular image file is
not already present.

A Final Word for Windows Users

A few Windows users wrote me in reference to my
article on PDF conversion in the December 2002 issue
of php|a to tell me that they experienced some prob-
lems running Ghostscript on their platform. After a bit
of mutual debugging, we determined a couple of valu-
able lessons:

- The Windows version of Ghostscript is called
gsw32.exe and not just gs.

- You need to specify the full path to Ghostscript,
as PHP does not include it in its search path.
This is true even if you can execute gsw32
directly from the command line without pro-
viding any path information.

This last note applies, of course, to ImageMagick as
well.

Figure 3 - PDF Viewer Interface

Marco Tabini is co-editor of php|architect. He spends most of his time
lurking around on the PHP mailing lists and on the php|a website doing
his best to confuse fellow programmers who are in trouble. You can reach
him at marcot@phparch.com.

php|a

T
IP

S
&

T
R

IC
K
S

TIPS & TRICKS

January 2003 · PHP Architect · www.phparch.com 68

Extended Sessions

Sessions don’t have to end when the user closes their
browser. You can adjust the setting of
session.cookie_lifetime in php.ini to give a lifetime, in
seconds, of the session cookie. If you do so, the session
cookie will persist, even if the user closes the browser
before returning back to your site. If you adjust this set-
ting, you should also adjust the session.gc_maxlifetime
setting, also. This setting, which controls when the
garbage cleanup will delete “stale” data from the ses-
sion files. If you have the session cookies persisting for
a longer amount of time, then the actual data in the
session files should persist for that amount of time
before they are cleaned up, alsoas well. If you are not
using the default session handler, then the garbage col-
lection does not occur for your sessions and you must
handle this yourself.

Now, whether there would ever be a need to do this
is another question. Extending the life of the session
means there are going to be more active sessions at a
time on your server and more files in the session folder.
Whether this is an issue or not depends on the amount
of traffic on your server. Having that same session_id
persist will also give malicious users more time to hijack
a session. Things like this should be taken into consid-
eration before you decide to extend the life of your ses-
sion.

Speaking of Sessions

ACROS Security (www.acros.si) published a paper in

December entitled “Session Fixation Vulnerability in
Web-based Applications.” The paper discusses how a
hacker can “issue” a session ID to a user as they log
onto your web application. PHP is described as having
a “permissive” session management mechanism,
because it will take any value of PHPSESSID and create
the session with that name. That means loading a page
that starts a session with ?PHPSESSID=1234 will create
a session with ID=1234 and a “php_1234” file in the
sessions directory.

Now if a malicious user can get another user to click
on a link to your application that defines a session ID
(and we all know how eager most people are to click on
links), they no longer have to intercept the session ID,
they already know what it is. They can wait for the user
to log in and then simply load up a protected page and
also pass along the same session ID they just forced
your application to use. Now they are basically logged
in as the user and have access to their pages and data.
Yes, it is a little more complicated; the malicious user
would have to know when the user has logged on,
what page to request, etc. You can also implement
checks of the IP address or referrer, but since those can
be set by the malicious user or can even change for
valid users, you’re not going to stop someone who is
dedicated.

So how do you stop them? Well, the valid user still
has to log on at some point and that’s when you make
sure they are assigned a unique session ID that didn’t
come from outside of your application. On the login
page, use the following code :

Tips & Tricks

By John W. Holmes

TIPS & TRICKS

January 2003 · PHP Architect · www.phparch.com 69

session_id(md5(uniqid(rand(),1)));

session_start();

To create a unique session ID for the user and ignore
anything that might have been passed by a malicious
user. This can only be done on the login page, other-
wise you’ll be creating new unique session IDs with
every request. After the user logs in and throughout the
rest of your site, you must now trust that the session ID
passed is unique and has been created by your pro-
gram. Malicious users will now be reduced to intercept-
ing or guessing valid session IDs to get into your appli-
cation.

You can even make PHP have a “strict” session man-
agement system by registering the session IDs you cre-
ate in a database or file and ensure that subsequent
requests match one of those session IDs that your appli-
cation created.

Less phpinfo()

The phpinfo() function is extremely useful for
checking to see if you have installed PHP correctly and
for verifying a lot of the internal settings of PHP. It can
also be useful in debugging scripts as you write them,
as it can print out the values of the EGPCS
(Environment, Get, Post, Cookie and Session) variables.
To make this easier, the function will take an argument
that lets you pick which section of the page you want
printed. Figure 2 shows the different values you can
pass and what part of phpinfo() will be shown with
each value. Rather than printing out the whole page,
you can use phpinfo(32) in the “debugging mode” of
your program to keep an eye on what’s being passed to
your scripts.

Manage Textbox Lengths

Tim Cowan submitted a tip that can help you man-
age the length of your textboxes in forms. The problem
is that if you don’t define a MAXLENGTH for your
textbox, then the user can type 50 or more characters
into it, not knowing that your database is going to
truncate it at 20. Of course, you can always set the
MAXLENGTH to 20 as you create your code, but then
when you change your database table, you have to go
back and edit all of the textboxes to reflect the new text
length.

So the suggestion is to create a function that’ll read
your table and look for columns that have a length.
These lengths can then be returned to your script to be
used in you <input> form elements. Figure 3 shows an
example of two functions that will look for the lengths
of VARCHAR and CHAR columns. The function returns
an array with the name of the table column as the key
and the length of the column as the value.

If you have a column ‘Name’ in a table ‘test’ that is
defined as a VARCHAR(25), the functions will return an
array such as the one shown below.

Array ([Name] => 25);

You can then use that value when creating your form
elements. For example, say the results shown above
were assigned to the variable $a. You would use it like
the following as shown here:

<input type=”Name’ maxlength=”<?=$a[‘Name’]?>”>

Of course, you should adapt the functions to your

Name (constant) Value Description

INFO_GENERAL 1
The configuration line, php.ini location, build date, Web
Server, System and more.

INFO_CREDITS 2 PHP 4 Credits. See also phpcredits().

INFO_CONFIGURATION 4
Current Local and Master values for php directives. See also
ini_get().

INFO_MODULES 8 Loaded modules and their respective settings.

INFO_ENVIRONMENT 16
Environment Variable information that's also available in
$_ENV.

INFO_VARIABLES 32
Shows all predefined variables from EGPCS (Environment,
GET, POST, Cookie, Server).

INFO_LICENSE 64 PHP License information. See also the license faq.

INFO_ALL -1 Shows all of the above. This is the default value.

Figure 2

TIPS & TRICKS

January 2003 · PHP Architect · www.phparch.com 70

own needs. The ones shown are only examples. They
both run at about the same speed during testing. You
could also look for INT or date/time columns. Also,
remember that this is a simple client side check that can
be bypassed. You should properly validate all of the val-
ues on the server side before you do anything with
them.

Thanks to Tim for this tip.

PHP 4.3 and SSL

Since PHP 4.3 is officially out, there are a couple new
features relating to SSL that should be mentioned.

If you have URL wrappers enabled in php.ini and
OpenSSL installed, you can use fopen() to open an
HTTPS connection to a web server. This can be used, for
example, to securely post information to a form on
another web site by passing information through the
URL.

fopen(“https://domain/script.php?var=1&var=2’,
’r’);

Then script.php can respond based on the passed
values. This would be an alternative to CURL or using
external programs for simple cases such as this.

You can now connect to MySQL over SSL, as well. A

fifth parameter to mysql_connect() was added to
pass ‘client_flags’. Setting this fifth parameter to
MYSQL_CLIENT_SSL will cause the connection to be
made over SSL. This is going to be ideal for applications
that have the web server on one computer and the
database on another. This will ensure the data being
transmitted between the two systems in protected.

Submit Your Own Tips & Tricks

If you have any suggestions or fancy tricks that you
use, be sure to submit them to us at
tipsntricks@phparch.com. We’ll give away a free one-
year subscription to php|a to the authors of all the tips
we publish!

John Holmes is a First Lieutenant in the U.S. Army and a freelance PHP
and MySQL programmer. He has been programming in PHP for over 4
years and loves every minute of it. He is currently serving at Ft. Gordon,
Georgia as a Company Commander with his wife, son, and another one
on the way.

php|a

function get_lengths($table)
{
 $retval = FALSE;

 $result = mysql_query("SHOW CREATE TABLE $table");
 if($result)
 {
 $create = mysql_result($result,0,1);

 preg_match_all("/`([a-z0-9_]+)`\s(var)?char\(([0-9]+)\)/i",$create,$matches);

 $cnt = count($matches[1]);

 for($x=0;$x<$cnt;$x++)
 { $retval[$matches[1][$x]] = $matches[3][$x]; }
 }

 return $retval;
}

function get_lengths2($table)
{
 $retval = FALSE;

 $result = mysql_query("DESC $table");
 if($row = mysql_fetch_assoc($result))
 {
 do
 {
 if(preg_match("/char\(([0-9]+)\)/i",$row[�Type�],$match))
 { $retval[$row[�Field�]] = $match[1]; }
 }while($row = mysql_fetch_assoc($result));
 }

 return $retval;
}

Figure 3

B
O

O
K

R
E
V
IE

W
S

BOOK REVIEWS

January 2003 · PHP Architect · www.phparch.com 71

MySQL Cookbook
by Paul DuBois
Published by O’Reilly
$49.95 (USA)
$77.95 (Canada)

Raise your hand if
you’ve ever heard

someone say that MySQL
is a “simple” database
management system that
shouldn’t be used in com-
plex enterprise-level appli-
cations because of its lack
of functionality.

We can’t see you from
here, but we’re sure that
quite a few hands are now up in the air and, if
you’re like us, this is something that you can only
find very frustating.

Receiving a book like MySQL Cookbook for
review is, therefore, a great pleasure; it’s not
everyday that one can get his hands on a 1000-
page weapon against the MySQL detractors!

The Cookbook covers in almost excrutiating
detail all the aspects of MySQL—from using its
text-based client to statistical techniques and

transaction management. Paul DuBois does an
excellent job at dissecting each topic from a num-
ber of different perspectives. For example, when
covering the MySQL client tool, he starts from the
basic “how-to-run-your-query” tutorial and then
goes deep into the details of generating neatly-
formatted HTML and XML output. Similarly, when
discussing transactions, the book deals with their
implementation in several languages—including
PHP—on top of the pure SQL approach.

The section on statistical analysis, in particular, is
very rich in valuable techniques for taking advan-
tage of MySQL’s engine in ways that are not
immediately obvious, such as combining group-
ing and aggregators to produce statistics on par-
tial groups.

While this book is mostly SQL-centric (as it
should be), whenever the author introduces a
web-based example, he does so in a variety of lan-
guages—usually Perl, PHP and Python, thus giv-
ing his readers a great opportunity not only to
learn more about MySQL, but also to compare
the various degrees of complexity in dealing with
it through a particular scripting platform.

For Your Reading

Pleasure

BOOK REVIEWS

January 2003 · PHP Architect · www.phparch.com 72

For Your Reading Pleasure

PHP4 Web Development Solutions
by K. Dash, B.Waters, A. Gianotto,

J.H. Endrerud et al.
Published by Wrox

Press
$49.99 (USA)
$77.99 (Canada)

If you expect this book to
teach you PHP, I hope

you kept the purchase
receipt. It is not for the
beginner. More like
someone who has been
working with PHP and
wants quick solutions for common problems.
Here's a quote from the introduction:

"This book targets experienced PHP Programmers
who either have some PHP experience, or the where-
withal to learn rapidly via the case studies."

This book is a compilation of tutorials for config-
uring, and implementing different web applica-
tions. Each tutorial has an introduction which
includes the purpose behind the solution and the
practical uses behind it. There are quite a few
applications geared towards WAP and free tools
from the Internet to make the job easier (ie.
Smarty template engine, PEAR::DB to name two)
. Also, there is extensive use of Classes in all
examples (Can you smell that? Smells like PHP5)
.

There is an interesting project to build a web
corpus (indexing unique words used in a web
content for a search engine). The basics of build-
ing a search engine are here. And, of course,
what good is a PHP solutions book without a
decent example of a Content Management
System?

Some projects use a fictional backdrop, and
where to apply the application is left as an
(offline) exercise for the reader. For example, the
Mission Control Wireless Job Board has an inter-
esting "SPY" story, where clients assign agents to
"Missions". Once a client chooses an agent, the
agent receives a text message on their wireless
device. Then, the agent can use their wireless

device to contact the client and get all the details
regarding the "Mission". Now, where have we
seen this before? "Mission" something...well, this
chapter makes it look more possible than ever.
There is strong emphasis on WML.

There are some inconsistencies when it comes
to presenting the material. For example, not all
projects have a flowchart where the user's experi-
ence is shown (a logical DFD). It's a very useful
concept for programmers where logic is every-
thing. A flowchart is very visual and helpful to
understand how all the pages work together.

There are no fancy call-outs and reminder 'icons'
in the book. It gets right to the point. Now this
might not be a very friendly way to keep your
readers interested, but it's fine for the experienced
programmer. Although the presentation is very
plain, it does give you what you need to know
about the code. Like most well written technical
books, all the code used in the book is available
from WROX. It's assumed the reader downloads
this from the website. It would have been more
convenient to have everything on a CD, but I
guess having it on a website makes it possible to
update/patch any code necessary.

Speaking of code, it is well commented -- some-
times. Let me elaborate: the code in the Classified
Ads Board is very well commented, while the
code in the Paranormal News Service doesn't
have a SINGLE line of comment. I found that very
odd.

At the end of every chapter, there is always a list
of improvements that can be made to the project.
To save paper, the details are posted on the
WROX website (http://www.wrox.com). Some of
the case studies do build on each other. The

Content Management one is a good example.
Moreover, as the book progresses, every case
study gets a little more complex.

In a nutshell, it's a white paper for a lot of case
studies found on the Wrox website. The experi-
enced programmer might just download all the
code and not buy the book, but that won't work.
You see, there are some critical pieces of informa-
tion in the book. Without those, it would be like
looking at the source code for a DLL written in VB.

php|a

e
x
it
(0

);
exit(0);

The release of PHP 4.3 marks a significant step forward in the development of our
beloved language. In fact, it has been picked up by a number of open-source news
outlets, such as NewsForge (http://www.newsforge.com) and SlashDot
(http://www.slashdot.org). This latter site, in particular, is often home to some rather
colourful discussions—thankfully, there are lots of opinionated people in the OSS
world—and the 4.3 news release was no exception. Although the various threads
sometimes covered useful topics—such as the new features offered by the latest
release—lots of people promptly jumped on board to turn the posting into yet anoth-
er “my-language-is-better-than-yours” Holy War of Computer Developers.

Why people even engage in such discussions is beyond me, and I usually retreat in
fear when I see one. However, this particular discussion did raise one important point:
many—too many—people out there have no idea what PHP can really do. Most devel-
opers who tried it in its early incarnations (most likely version 3) think of it as a “nice
hacking tool” for putting web pages together when you’re in a hurry. They are com-
pletely unaware of the impressive steps forward that PHP has taken since then.

The temptation to react to this reality by shaking of our heads and muttering some-
thing like “too bad for them” is strong (at least, it is for me). That’s a very dangerous
attitude, however, for the responsibility to ensure that the world at large understands
how advanced PHP has become as a serious development tool falls on the shoulders of
the PHP community in general. Widespread adoption and understanding is the only
way to ensure a high level of support for the technologies that we use everyday.

The PHP Group can’t do this by itself. For one thing, it isn’t geared up for this type
of task, as it is mainly a technical team that has its collective hands full with the devel-
opment of the language. In this month’s interview on the pages of this magazine,
Zend’s President and CEO Doron Gerstel lends creedence to this idea: it’s necessary for
PHP users and commercial vendors to step up to the task and devote at least some of
their resources to advocacy and publicity for PHP in general.

We at php|a try to do our part—after all, a magazine dedicated to PHP is almost
purely a tool of advocacy—but we recognize that there is still a lot of road to travel,
and hope to fulfill our role even better with some initiatives that we are planning for
the months ahead. I, for one, can only hope that the rest of the PHP community steps
up to the plate and that together we can build a better business environment for PHP.

January 2003 · PHP Architect · www.phparch.com 73

Let�s Call It The

Unknown Language

By Marco Tabini

